MATLAB Tutorial

Csci 5521 Machine Learning Fundamentals

Matlab GUI

- Command window
- the main window where you type commands directly to the MATLAB interpreter
- an example of Matlab command
- disp('Hello World!');
- Editor window
- a simple text editor where you can load, edit and save complete MATLAB programs
- debug/run
- open editor window
- from menu (File->New->Blank M-File)
- edit MyProgram.m (or any filename of your script)
- Help window
- It also has a number of example programs and tutorials.
- show short help in command window
- help sort (or any function name)

Loading data from disk

- Supported types
- Text
- white-space/tab delimited
- Spreadsheet
- *.xls, *. xlsx, *. csv
- MATLAB formatted data
- *.mat
- Other types
- images
- sound

Loading data from disk

- How to load data in Matlab
- from menu (File->Import Data)
- use "load" function
- a.txt:

1,2,3
4,5,6
\gg data $=$ load('a.txt');
data $=$
123
$4 \quad 5 \quad 6$

- more advanced functions:
- textread, textscan, fscanf, xlsread

Variables and Assignment

- Variable types
- double
- $a=6$;
- array
- MyArray = $\left.\begin{array}{lll}1 & 2 & 3\end{array}\right] ; \quad$ (1x3 double)
- char
- letter = 'A';
- char array (string)
- Name='Mark';
(1x4 char)
- other types
- cell, struct, class
- Display the contents of a variable
- disp(variable); (e.g. disp(MyArray);)
- type the name of variable and press "enter" without semicolon
- Note: MATLAB does not require you to declare the names of variables in advance of their use.

Array operations

- Define one dimensional array
- row vector
- MyArray = $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$ 5];
- MyArray = zeros(1,5);
- column vector
- MyArray $=[1 ; 2 ; 3 ; 4 ; 5] ;$ or MyArray $=\left[\begin{array}{lll}1 & 2 & 3\end{array} 4 \text { 5 }\right]^{\prime}$;
- MyArray = zeros $(5,1)$;
- Access/modify values
- $\mathrm{a}=\operatorname{MyArray}(\mathbf{1})$;
- $\operatorname{MyArray}(1)=3$;
- MyArray(2)=6;
- Notei: Use [] to define array and use () to access array
- Note2: Indexes must be positive integers. The smallest index is 1.

Array operations

- Generate arrays containing sequences with the ' \because ' operator
- start:stop
- $a=1$: 9 ;
is equivalent to $\mathrm{a}=\left[\begin{array}{ll}123456789\end{array}\right]$;
- start:increment:stop
- $\mathrm{b}=1: 2: 9$;
is equivalent to $\mathrm{b}=\left[\begin{array}{ll}13 & 7 \\ 7\end{array}\right.$ 9];
- Select sub-parts of the array with the ' $:$ ' operator
- b(3:5)
is equivalent to $\mathrm{b}\left(\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]\right)$, whose value is [579 9]
- $b(1: 2: 5)$
is equivalent to $\mathrm{b}\left(\left[\begin{array}{lll}1 & 3 & 5\end{array}\right]\right)$, whose value is [159]
- b(3:end)
is equivalent to $b\left(\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]\right)$ since b contains 5 elements

Matrix operations

- Define two dimensional array
- $\mathrm{A}=[123 ; 45$ 6];
$A=$
123
$4 \quad 5 \quad 6$
- Building Matrices
- $\mathrm{A}=\operatorname{zeros}(2,3)$;
- $A=\operatorname{rand}(2,5)$;
- $A=$ eye(6);
- $\mathrm{A}=\operatorname{ones}(5)$;

Matrix operations

- Access/modify values
- variable_name(row_index, column_index)
- $\mathrm{a}=\mathrm{A}(2,1)$;
(a will be 4)
- $\mathrm{A}(2,1)=7$;
before

$$
\begin{array}{rll}
\mathrm{A}= & & \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}
$$

after

$\mathrm{A}=$		
1	2	3
7	5	6

Matrix operations

- Select sub-parts of the array with the ' \because ’ operator A $=$

76	71	82	44	49
74	3	69	38	45
	69	38		
39	28	32	77	65
66	5	95	80	71
17	10	3	19	75

- $A(2: 4,2)$
- $\mathrm{A}(3,1: 4)$
- $A([12],[34])$
- Q ? $A(1: 2: 5$, end $)$

Matrix operations

- Assign values to a sub-part of a matrix
- $A(2: 4,1: 3)=[123 ; 456 ; 789] ;$
- both sides are 3×3 matrices

• A $=$				
76	71	82	44	49
1	2	3	38	45
4	5	6	77	65
7	8	9	80	71
17	10	3	19	75

- $\mathrm{A}(2: 4,1: 3)=5$;
- the right side is a scalar
- $\mathrm{A}=$

76	71	82	44	49
5	5	5	38	45
5	5	5	77	65
5	5	5	80	71
17	10	3	19	75

Matrix operations

- Matrix multiplication
- $C=A^{*} B$

```
A=[llll 5; 2 4 7}
A=
    1 3 5
    24 7
B=
    -5 8 111
    3
    4 0}
C=A*B
C=
    24}35511
    30
```

$\mathrm{B}=[-5811 ; 3921 ; 408] \quad$ (3x3 matrix)

- Vector inner product
$A=\left[\begin{array}{llll}5 & 3 & 2 & 6\end{array}\right]$
(1x4 row vector (matrix))
$\mathrm{A}=$
$\begin{array}{llll}5 & 3 & 2\end{array}$
$B=\left[\begin{array}{llll}-4 & 9 & 0 & 1\end{array}\right]$,
$B=$
(4x1 col vector (matrix))

9
0
1

A*B
ans $=$
13

Matrix operations

- Element-by-element product
- A.*B
- A and B must have the same size

$A=$	
1	2
3	4
A. $* \mathrm{~B}$	
5	12
21	32

$B=$	
5	6
7	8
A*B $=$	
19	22
43	50

- Multiply a matrix by a scalar
- A*b or b*A (b is a scalar)
$\mathrm{A} * 5=$
510
$15 \quad 20$
- A*b, b*A, A.*b, b.*A are the same if b is a scalar.
- Q: How about $A^{*} A, A^{\wedge} 2$ and $A \wedge_{2}$?

Control Statements

- If Statement

if $x<10$

$$
\operatorname{disp}(\mathrm{x}) ; \quad \% \text { only displays } \mathrm{x} \text { when } \mathrm{x}<10
$$

end

- While Statement
$\mathrm{p}=1$;
while $\mathrm{p}<50$
$\mathrm{p}=2 * \mathrm{p} ;$
end
disp(p); \% displays 64
- For Statement

```
for i=1:10
        disp(i);
    end % displays 1 to 10
```

- Noter: They must be paired with 'end'
- Note2: Use "==" and "~=" for logical expression

Functions

- build-in functions
- can be called in different forms
- e.g. max
- $C=\max (A)$
- returns the largest elements along different dimensions of an array
- $\mathrm{C}=\max (\mathrm{A}, \mathrm{B})$
- returns an array the same size as A and B with the largest elements taken from A or B
- $[C, I]=\max (. .$.
- finds the indices of the maximum values of A , and returns them in output vector I
- refer to the help if you are not sure about the usage
- e.g. help max
- what if you forget the name of the function?
- google matlab + (the description of that function)
- e.g. "matlab eigenvalues" or "matlab k-means"

Functions

- Write your own function
- e.g. calculates the mean and standard deviation of a vector
- stat.m:

```
function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/n));
```

- call the function in command window or in a script file
[mean stdev] $=\operatorname{stat}([12.745 .498 .926 .653 / 1])$
mean $=$
47.3200
stdev $=$
29.4085
- Note: The filename must be the same with the function name.
- It is recommended that each function is written in separated *.m files.

Scripts vs. Functions

- Scripts
- no input or output arguments
- useful for automating series of MATLAB commands
- computations that you have to perform repeatedly from the command line
- analogy in C language: main function
- Functions
- accepts input from and returns output to its caller
- begins with a line containing the function key word
- cannot be defined within a script file or at the MATLAB command line
- analogy in C language: other utility functions called in main function

Some useful command

- save
- save workspace variables to file
- they can be restored later by 'load' command
- who, whos
- list variables in workspace
- clear
- remove items from workspace, freeing up system memory
- use it to remove unused variables when you are short of memory
- quit
- quit Matlab
- Note: don't forget to save your source code (scripts/functions)

