#let dfrac(a, b) = $display(frac(#a, #b))$ = Problem 1a Given: #let ww = $bold(w)$ #let xx = $bold(x)$ #let vv = $bold(v)$ #let XX = $bold(X)$ - $E(ww_1,ww_2,vv|XX) = - sum_t r^t log y^t + (1 - r^t) log(1 - y^t)$ - $y^t = "sigmoid"(v_2 z_2 + v_1 z_1 + v_0)$ - $z^t_1 = "ReLU"(w_(1,2)x^t_2 + w_(1,1)x^t_1 + w_(1,0))$ - $z^t_2 = tanh(w_(2,2)x^t_2 + w_(2,1)x^t_1 + w_(2,0))$ Using the convention $x_(j=1..D)$, $y_(i=1..K)$, and $z_(h=1..H)$. Solved as: - $ frac(diff E, diff v_h) &= - sum_t frac(diff E, diff y^t) frac(diff y^t, diff v_h) \ &= - sum_t (r^t dot frac(1, y^t) - (1-r^t) dot frac(1, 1-y^t)) (y^t z^t_h (1-y^t)) \ &= - sum_t (frac(r^t, y^t) - frac(1-r^t, 1-y^t)) (y^t z^t_h (1-y^t)) \ &= - sum_t (frac(r^t (1-y^t)-y^t (1-r^t), cancel(y^t) (1-y^t))) (cancel(y^t) z^t_h (1-y^t)) \ &= - sum_t (frac(r^t - y^t, cancel(1-y^t))) (z^t_h cancel((1-y^t))) \ &= - sum_t (r^t - y^t) z^t_h \ $ - $ frac(diff E, diff w_(1,j)) &= - sum_t frac(diff E, diff y^t) frac(diff y^t, diff z^t_h) frac(diff z^t_h, diff w_(1,j)) \ &= - sum_t (frac(r^t, y^t) - frac(1-r^t, 1-y^t)) (y^t (1-y^t) v_h) (x_h cases(0 "if" ww_1 dot xx <0, 1 "otherwise")) \ &= - sum_t (r^t - y^t) v_h x_h cases(0 "if" ww_1 dot xx <0, 1 "otherwise") \ $ - $ frac(diff E, diff w_(2,j)) &= - sum_t frac(diff E, diff y^t) frac(diff y^t, diff z^t_h) frac(diff z^t_h, diff w_(2,j)) \ &= - sum_t (r^t - y^t) v_h x_h (1-tanh^2(ww_2 dot xx)) \ $ = Problem 1b