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Some Definitions

Quadratic Form
* A:a nxn square matrix € R™"
* x:a nxivector € R"
 the quadratic form: x'Ax

o Itis a scalar value.

» We often implicitly assume that A is symmetric since x'Ax =
xT(A/2+A1/2)x
» If we write it as the elements of x and A, it is

x' Ax = ii/jﬁxﬂj

i=1 j=1
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Some Definitions
Positive Definite (PD)

e A: A symmetric matrix € S"

» Forall non-zero vectors x € R, x!Ax > o.
» Then A is positive definite (PD)

Positive Semidefinite (PSD)

e A: A symmetric matrix € S"
« For all vectors x € R?, xTAx = o.
» Then A is positive semidefinite (PSD)

Negative Definite and Negative Semidefinite
Indefinite
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» Positive Definite (PD)
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Some Definitions

Eigenvalues and Eigenvectors

o A:
° A:

500, 05

a square matrix € R™"
e C

a vector € Cn

If Ax = Ax, x # 0, A is an eigenvalue of A and x is the
corresponding eigenvector.

Ais a solution to |(Al - A)| = o.

The corresponding eigenvector of A, is the solution to the
linear equation (Al - A)x = o.

There are more efficient methods in practice to numerically
compute the eigenvalues and eigenvectors.
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Properties of Eigenvalues and Eigenvectors

The trace of a A is equal to the sum of its eigenvalues.
The determinant of A is equal to the product of its eigenvalues.

The rank of A is equal to the number of non-zero eigenvalues of
A.

If A is non-singular then 1/, is an eigenvalue of A~ with
associated eigenvector x;.

The eigenvalues of a diagonal matrix D = diag(d,, . . . d,)) are just
the diagonal entriesd,, . . . d,.
Diagonalizable:

e We can write all the eigenvector equations together as AX = XA.

e If the eigenvectors of A are linearly independent, A = XAX~'. We say
A is diagonalizable.
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Eigenvalues and Eigenvectors of Symmetric Matrices

A: a symmetric matrix € S"
e All the eigenvalues of A are real.

e The eigenvectors of A are orthonormal (The inner
product is o.).

e A isdiagonalizable: A = UAUT (Note: U =U")

x'Ax=x"UANU 'x=y" Ay = anxll.yf

AllA,>0=Ais positiVéZIdefinite

All A, = 0 = A is positive semidefinite

A has both positive and negative eigenvalues = A is indefinite



What is Matrix Calculus
Calculus

e Differential calculus
e Derivative

e.g. f(x)=x?, derivative function f’(x)=2x
e Integral calculus
Matrix Calculus

e Extension of calculus to the vector/matrix setting
» Gradient

o Hessian
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The Gradient
Definition

e Function f ; R™» R
e A: m x n matrix

e The gradient of f (written as V,f(A)) is an m x n matrix
and each element of the matrix is a partial derivative

defined by

V f(A)), = %
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The Gradient

Example
e A:2x2 matrix A:(Z“ lej
e f(A)=|A|

e calculate each element of VAf(A)

(VAf(A))n = Gd) = 8(a11a22 _a12a21)

=da
04, da,, 22
I (4) _ a8y 6,8,
V., f(4)), = = L
V. ) =L : .
U (A _ a0y, — a1,a5))
VoifAy)iz = iy
7.y, - LD At~ .

V f( ) E (allaZZ 12 21)
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The Gradient

Example
e The gradient of {

of(4) o]

o4, o4 B
v T 11 12 ) —
11 (4) of (A) of(A) (_ By J
o

e The general case for f(A)=|A

V f(4)= ‘A‘A_T
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The Gradient

When A is a vector

e avectorx € R" * the gradient of f
[ O (x) |
i Ox,
X, I (x)
Now V. f(x)= 89-62
% ¥
[0

‘Two properties
e V.(f(x) +g(x)) = V,f(x) + V,g(x)
e Forte R, V (tf(x)) = tV, f(x)
‘Two important notes
o VAf(A) is always the same as the size of A

e the gradient of f is defined only if f is a real-valued function
- e.g. we can't take the gradient of f=2A with respect to A
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The Hessian
Definition

e Function f: R» - R
® X:an nxivector

e The Hessian matrix with respect to x (written as V2f(x))
is an n x n matrix and each element of the matrix is a
partial derivative defined by

0°f(x)

(Vif (), = >
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The Hessian

Example
® X:a 2x1vector x:(’j
o f(x)= x( 3 4}

e calculate each element of V2f(x)

V2o, = LFQ) T —xxn +dx])  02x-x)
x 11 Xy axl d X, 0 X, axl
2 2 2 2
(Vif(x))lz o g f(x) = d (xl i +4x2) A 6(2)(71 _x2) 0

xlaxz axlaxz ax2

2
(V£ (X)), = A 0 Gn oy, v An) I 8 ) -
xzaxl axzaxl axl

(V f(x))22 : f(X) a (xl — XX +4X2) % 8(8)(:2)

=8
d%,0%, 0x,0x, 0x,




The Hessian
Example

e The Hessian matrix of f

Weae sy

) O OEROx ey
vxf(x) TR azf(x) aZf(x) _(_1 g ]

ey o
In general, if f(x) = xTAxand A € S™

V2f(x)=24
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The Hessian

Some notes
e The Hessian is defined only when f(x) is real-valued.
e Hessian is always symmetric.

e We will only consider taking the Hessian with respect to a
vector.

e The Hessian is not the gradient of the gradient.

« However, the gradient of the ith entry of V,f(x) is the ith column (or
row) of V2f(x).

Some useful results
e Vblx=b
e V. x'Ax = 2Ax (if A symmetric)
e V2xTAx = 2A (if A symmetric)
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Application in Least Squares Optimization
The problem

e Given a full-ranked matrix A € R™" and a vector b € R™
e Suppose there is no x such that Ax=b.
e Find a vector x € R", such that the square of the Euclidean
norm ||Ax — b||2 is minimized.
Solve the problem
|Ax—8]; = (Ax—b) (Ax—b)=x"A" Ax—2b" Ax+b"b
e Take the gradient with respect to x

V. (x"A"Ax—-2b" Ax+b'b)=V x" A" Ax -V 20" Ax+V b'b=2A4"Ax-2A4"b

e Set the gradient to zero (vector) and we get the solution
x=(A"A)" A"b
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