Matrix Calculus

CSCI 5521 Machine Learning fundamentals

- Quadratic Form
 - A: a nxn square matrix $\in \mathbb{R}^{n \times n}$
 - x: a nx1 vector $\in \mathbb{R}^n$
 - the *quadratic form*: x^TAx
 - It is a scalar value.
 - We often implicitly assume that A is symmetric since $x^{T}Ax = x^{T}(A/2+A^{T}/2)x$
 - If we write it as the elements of x and A, it is

$$x^{T} A x = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{i} x_{j}$$

- Quadratic Form
 - example

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$x^{T} A x = \begin{pmatrix} x_{1} & x_{2} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} ax_{1} + cx_{2} & bx_{1} + dx_{2} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = ax_{1}^{2} + bx_{1}x_{2} + cx_{1}x_{2} + dx_{2}^{2}$$

- Positive Definite (PD)
 - A: A symmetric matrix $\in S^n$
 - For all **non-zero** vectors $x \in R^n$, $x^TAx > o$.
 - Then A is **positive definite** (PD)
- Positive Semidefinite (PSD)
 - A: A symmetric matrix $\in S^n$
 - For all vectors $x \in R^n$, $x^T A x \ge 0$.
 - Then A is **positive semidefinite** (PSD)
- Negative Definite and Negative Semidefinite
- Indefinite

- Positive Definite (PD)
 - example

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

$$x^{T}Ax = \begin{pmatrix} x_{1} & x_{2} & x_{3} \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = 2x_{1}^{2} - 2x_{1}x_{2} + 2x_{2}^{2} - 2x_{2}x_{3} + 2x_{3}^{3} = x_{1}^{2} + (x_{1} - x_{2})^{2} + (x_{2} - x_{3})^{2} + x_{3}^{2} \ge 0$$

- Eigenvalues and Eigenvectors
 - A: a square matrix $\in \mathbb{R}^{n \times n}$
 - λ: ∈ C
 - x: a vector $\in \mathbb{C}^n$
 - If $Ax = \lambda x$, $x \neq 0$, λ is an *eigenvalue* of A and x is the corresponding *eigenvector*.
 - λ is a solution to $|(\lambda I A)| = 0$.
 - The corresponding eigenvector of λ_i is the solution to the linear equation $(\lambda_i I A)x = o$.
 - There are more efficient methods in practice to numerically compute the eigenvalues and eigenvectors.

- Eigenvalues and Eigenvectors
 - example

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = \lambda^2 - 4\lambda + 3 = 0 \Rightarrow \lambda_1 = 1, \lambda_2 = 3$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 1 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 3 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \Rightarrow \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Properties of Eigenvalues and Eigenvectors

- The trace of a A is equal to the sum of its eigenvalues.
- The determinant of A is equal to the product of its eigenvalues.
- The rank of A is equal to the number of non-zero eigenvalues of A.
- If A is non-singular then $1/\lambda_i$ is an eigenvalue of A^{-1} with associated eigenvector x_i .
- The eigenvalues of a diagonal matrix $D = diag(d_1, ... d_n)$ are just the diagonal entries $d_1, ... d_n$.
- Diagonalizable:
 - We can write all the eigenvector equations together as $AX = X\Lambda$.
 - If the eigenvectors of A are linearly independent, $A = X\Lambda X^{-1}$. We say A is *diagonalizable*.

Eigenvalues and Eigenvectors of Symmetric Matrices

- A: a symmetric matrix \in Sⁿ
 - All the eigenvalues of A are real.
 - The eigenvectors of A are orthonormal (The inner product is o.).
 - A is diagonalizable: $A = U\Lambda U^{T}$ (Note: $U^{-1}=U^{T}$)
 - $x^T A x = x^T U \Lambda U^T x = y^T \Lambda y = \sum_{i=1}^{n} \lambda_i y_i^2$
 - All $\lambda_i > o \Rightarrow A$ is positive definite
 - All $\lambda_i \ge 0 \Rightarrow A$ is positive semidefinite
 - A has both positive and negative eigenvalues ⇒ A is indefinite

What is Matrix Calculus

- Calculus
 - Differential calculus
 - Derivative
 - e.g. $f(x)=x^2$, derivative function f'(x)=2x
 - Integral calculus
- Matrix Calculus
 - Extension of calculus to the vector/matrix setting
 - Gradient
 - Hessian

- Definition
 - Function $f: \mathbb{R}^{m \times n} \to \mathbb{R}$
 - A: m × n matrix
 - The *gradient* of f (written as $\nabla_A f(A)$) is an $m \times n$ matrix and each element of the matrix is a partial derivative defined by

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$$

- Example
 - A: 2x2 matrix $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$
 - f(A)=|A|
 - calculate each element of $\nabla_A f(A)$

$$(\nabla_{A} f(A))_{11} = \frac{\partial f(A)}{\partial A_{11}} = \frac{\partial (a_{11} a_{22} - a_{12} a_{21})}{\partial a_{11}} = a_{22}$$

$$(\nabla_{A} f(A))_{12} = \frac{\partial f(A)}{\partial A_{12}} = \frac{\partial (a_{11} a_{22} - a_{12} a_{21})}{\partial a_{12}} = -a_{21}$$

$$(\nabla_{A} f(A))_{21} = \frac{\partial f(A)}{\partial A_{21}} = \frac{\partial (a_{11} a_{22} - a_{12} a_{21})}{\partial a_{21}} = -a_{12}$$

$$(\nabla_{A} f(A))_{22} = \frac{\partial f(A)}{\partial A_{22}} = \frac{\partial (a_{11} a_{22} - a_{12} a_{21})}{\partial a_{22}} = a_{11}$$

- Example
 - The gradient of f

$$\nabla_{A} f(A) = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} \end{bmatrix} = \begin{pmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{pmatrix}$$

• The general case for f(A)=|A|

$$\nabla_A f(A) = |A| A^{-T}$$

- When A is a vector
 - a vector $x \in \mathbb{R}^n$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

• the gradient of f

$$\nabla_{x} f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} \\ \frac{\partial f(x)}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{n}} \end{bmatrix}$$

- Two properties
 - $\nabla_{\mathbf{x}}(\mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})) = \nabla_{\mathbf{x}}\mathbf{f}(\mathbf{x}) + \nabla_{\mathbf{x}}\mathbf{g}(\mathbf{x})$
 - For $t \in R$, $\nabla_x (t f(x)) = t \nabla_x f(x)$
- Two important notes
 - $\nabla_A f(A)$ is always the **same** as the **size** of A
 - the gradient of f is defined only if f is a real-valued function
 - e.g. we can't take the gradient of f=2A with respect to A

- Definition
 - Function f: $R^n \rightarrow R$
 - x: an nxi vector
 - The *Hessian* matrix with respect to x (written as $\nabla_x^2 f(x)$) is an n × n matrix and each element of the matrix is a partial derivative defined by

$$(\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

- Example
 - x: a 2x1 vector $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ $f(x) = x^T \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix} x$

 - calculate each element of $\nabla_x^2 f(x)$

$$(\nabla_{x}^{2} f(x))_{11} = \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{1}} = \frac{\partial^{2} (x_{1}^{2} - x_{1} x_{2} + 4x_{2}^{2})}{\partial x_{1} \partial x_{1}} = \frac{\partial (2x_{1} - x_{2})}{\partial x_{1}} = 2$$

$$(\nabla_{x}^{2} f(x))_{12} = \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} = \frac{\partial^{2} (x_{1}^{2} - x_{1} x_{2} + 4x_{2}^{2})}{\partial x_{1} \partial x_{2}} = \frac{\partial (2x_{1} - x_{2})}{\partial x_{2}} = -1$$

$$(\nabla_{x}^{2} f(x))_{21} = \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} = \frac{\partial^{2} (x_{1}^{2} - x_{1} x_{2} + 4x_{2}^{2})}{\partial x_{2} \partial x_{1}} = \frac{\partial (-x_{1} + 8x_{2})}{\partial x_{1}} = -1$$

$$(\nabla_{x}^{2} f(x))_{22} = \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{2}} = \frac{\partial^{2} (x_{1}^{2} - x_{1} x_{2} + 4x_{2}^{2})}{\partial x_{2} \partial x_{2}} = \frac{\partial (8x_{2})}{\partial x_{2}} = 8$$

- Example
 - The Hessian matrix of f

$$\nabla_{x}^{2} f(x) = \begin{bmatrix} \frac{\partial^{2} f(x)}{\partial x_{1}^{2}} & \frac{\partial^{2} f(x)}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f(x)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(x)}{\partial x_{2}^{2}} \end{bmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 8 \end{pmatrix}$$

• In general, if $f(x) = x^T A x$ and $A \in S^{n,}$

$$\nabla_x^2 f(x) = 2A$$

- Some notes
 - The Hessian is defined only when f(x) is real-valued.
 - Hessian is always **symmetric**.
 - We will only consider taking the Hessian with respect to a vector.
 - The Hessian is **not** the gradient of the gradient.
 - However, the gradient of the ith entry of $\nabla_x f(x)$ is the ith column (or row) of $\nabla_x^2 f(x)$.
- Some useful results
 - $\nabla_{\mathbf{x}} \mathbf{b}^{\mathrm{T}} \mathbf{x} = \mathbf{b}$
 - $\nabla_{\mathbf{x}} \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = 2 \mathbf{A} \mathbf{x}$ (if A symmetric)
 - $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

Application in Least Squares Optimization

- The problem
 - Given a full-ranked matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$
 - Suppose there is no x such that Ax=b.
 - Find a vector $x \in \mathbb{R}^n$, such that the square of the Euclidean norm $||Ax b||_2^2$ is minimized.
- Solve the problem

$$||Ax-b||_2^2 = (Ax-b)^T (Ax-b) = x^T A^T Ax - 2b^T Ax + b^T b$$

• Take the gradient with respect to x

$$\nabla_{x}(x^{T}A^{T}Ax - 2b^{T}Ax + b^{T}b) = \nabla_{x}x^{T}A^{T}Ax - \nabla_{x}2b^{T}Ax + \nabla_{x}b^{T}b = 2A^{T}Ax - 2A^{T}b$$

Set the gradient to zero (vector) and we get the solution

$$x = (A^T A)^{-1} A^T b$$

End!