CSCI 5521: Machine Learning Fundamentals (Fall 2023)

Supervised Learning

(Chpt 2)

Rui Kuang

Department of Computer Science and Engineering
University of Minnesota

UNIVERSITY OF MINNESOTA.

Twin Cities « Duluth =~ Morris + Crookston + Rochester = Qther Locati




Key Concepts

m Formulation of supervised learning: classification
and regression

m First example of classification algorithms:
perceptron learning

m Fundamental learning theory: model complexity
and VC dimension

m Multiclass classifier: K-nearest neighbors (KNN)
m Line regression by least squares

m [rade-off by model complexity and cross-
validation
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Supervised Learning

m Classification m Regression
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Supervised Learning

m Classification m Regression
Data: X ="'} X ={x'r'}
t 1 1f x 18 positive
. =< t
Output: 0/-11f x 1s negative rrEq
(Class label) (Response)

Remember the notations on page xxiii-page xxiv in EA book
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Classification

. t N
Data X = {X ,}" i1

X1 X2 r
0.934 0.046 -1
0.679 0.097 -1
0.758 0.823 1
0.743 0.695 -1
0.392 0.317 -1
0.655 0.950 1
0.171 0.034 -1
0.706 0.439 -1
0.032 0.382 1
0.277 0.766 1

Output: r =-

1 if X 1s positive

0/-11f x 1s negative
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Learning a Class from Examples

m Class C of a “family car”

Is car x a family car?

What do people expect from a
family car?

m Output:

Positive (+) and negative (—) examples
m Input representation:
X1. price, X, . engine power
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Training set X

X ={x"r'}",
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Class in a Rectangle

5 A
2 ( p, < price <= p2) AND (e1 < engine power < ez)
L.E.J
~ °© °© C
S
- &
2y D S
D @ =
(’1
- S 5 = hx) 1 if /2 says X 1S positive
P X)=1,. : :
o 0 if /& says X 1s negative
1 | | 1 >
) 2,
P 2 x,: Price
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Hypothesis class HH

Consider H: the set of all rectangles

: 4 1 if & says X is positive
Sk n(x) =1 . . .
& - 0 if /4 says X 1s negative
5 False positive
o h = e C o |
¢ — alse negativ
: — = . / \se negative
a D S
s O Error of hon X
-
I " S o N
& © E(hIX)=21(h(X’)¢r’)
S t=1
5 1 1 1 ; 1 >
1 Pz X Price
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Version Space

A
most specific hypothesis, S

most general hypothesis, G

x,: Engine power

h € H, between Sand G is
consistent and make up the
version space

(Mitchell, 1997)
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Linear Classifier

h(x)=<w,x>+b is a linear
classifier

h(x)>0 positive
h(x)<0 negative

h e H, H?



Perceptron Learning

m Perceptron algorithm, Rosenblatt, 1957.
m |nitialization:

w=0
m lterate until converge (no mistake)

for each example (x',r"):
if (<w,x' >%*r' <0)

wW=w+rx



Perceptron Learning

s X2
<w,x>+b=0
W+rtxt X
X
X X
rtxt %
(@) (@)
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Best in the Version Space
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Margin

m Choose h with largest margin
m \Why?
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Model Capacity

m Different models have different capacity
meaning the ability to handle more
complex data.

m How to measure model capacity?

m The maximum number of data points that
can be classified perfectly in any labeling.
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VC (Vapnik Chervonenkis) Dimension

m N points can be labeled in 2V ways as +/—

m In a particular arrangement, H N
if there exists h € H consistent for any of
the 2N ways:

VC(H )= N
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VC Dimension




"
VC (Vapnik Chervonenkis) Dimension

m How about axis-aligned rectangles?

=" A
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VC Summary

m [he capacity of function is measured by
the number of data points that can be
shattered by the function.

m VC dimension can be motived by the proof
of No-Free-Lunch theorem for PAC

learning theory (section 2.3 EA book).
m Rectangle classifier in 2-D space: 4.
m Aline : 3.

m More ...



"
VC Dimension

m More generally, in RP space, what is the
VC of a hyperplane?

m What is the VC of a triangle classifier?

m |s an algorithm that can shatter only 4 or 3
data points useful?

m How easy it is to determine the VC
dimension for the hypothesis class?



|
|

VC Dimension:;
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Multiple Classes, C i=1,...,K

Engine power

Sports car

reje ct
L]
[]
- ]
- O

Family car

Luxury sedan

X ={'r},

r'=C, ifx' € C

or

lifx' € C
0ifx' € C.j =i

Train hypotheses
hi(X), i=1,...,K:

L hl.(X’)= lifx' e C

Price

0ifx'€ C,,j = i
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KNN Classification

m K nearest neighbors

_ t aat t _ t (k)
hi(x) = |{(xf,7%) | 7 = 1 &x* € N
® Output-1 @ Output-2 Output-3 +  output-1 +  output-2 output-3
Prototypes and decision boundary Test data, RR=92.00%

02 04 06 08 ' 02 04 06 08
Input-1 input-1

http://mirlab.org/jang/books/dcpr/prKnnc.asp?title=5-2%20K-nearest-neighbor%?20Classifiers&language=english
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How to Choose K for KNN?
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m \What is the VC dimension of KNN?

m Is VC proportional to the # of parameters (appeared
complexity)?

http://ljdursi.github.io/ML-for-scientists/
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Regression

X = {xt,rt}: . refn

r' = g(x’) + ¢, (&: random noise)

Training Error:

E(51X) - %}3[ )]
E(wl,wo IX) = %;[ﬂ —(wlx’ + WO)]2
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Regression

m How does the error function look like?




"
Regression

m Find the g to minimize training error

N

E(wl,w0 IX) = %E[rt (wlxt + WO)]2

=1

FE(w,wy 1X) 1 &
D R
OE(w,.,wy IX) 1 <ar, t t
(W;M‘/:O )=N2[(7« _Wl'x WO)(—X )]:O
Extrt—er
W, f W, =T —WX
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Polynomial Regression

m |s polynomial fitting
very different?

g(x) = EW” (x)” +w,

. . T
m It is the same as linear  g(x) =w'x
regression with a W=[Wpueosw, W, |

polynomial mapping. b

1 0
x=[x,..x,x |



Summary of Supervised Learning

1 ox10)  glx) =wx+w,

2 61X =EL(rf,g(x 16))
ur0-$)er)  Her0- 13-l

3. 6* = arg m@inE(@ | X)

Algorithms: KNN, percepton, linear regression
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Noise and Model Complexity

. =" A

Data is not perfect
m Data recording might not be h, ~a-© —

perfect (shifted data points) G, = _|”1

& &® o)
o P
m Wrong labeling of the data . e ©
— 7 “

m There might be additional S

unobervable hidden variables.
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Noise and Model Complexity

4

’i f
@ .-
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Options:
m Simple model with training errors
m Complex comdel with no training error
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Noise and Model Complexity

Given similar training error |
use the simpler one e e,

m Simpler to use (lower L .
computational complexity) B
m Easier to train (lower space —

complexity) V
m Easier to explain (more o i

interpretable) /\/
m Generalizes better (lower A

variance - Occam’s razor)
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Generatlization and Overfitting

o How well a model
performs on new data

m Overfitting: 7{ more complex than C or f
m Underfitting: #H less complex than C or f

Y
N, ® = test data PN ® = test data

& = train data & = train data
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Model Selection & Generalization

m Learning is an ; data is not
sufficient to find a unique solution

m Given d binary inputs, there are at most
~D samples, and 92" binary functions

m Each sample eliminates half of the functions;
m Thus, N samples leaves 722°-V viable functions

m Not possible to check all functions. Need for
, assumptions about



Cross-Validation

m [0 better estimate generalization error, we
need data unseen during training. We split
the data as

Training set (50%)
Validation set (25%)
Test set (25%)

m Resampling when there is few data
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Cross-Validation
4-fold validation (k=4)

Fold 1 Testing set ‘ Training set

Fold 2 Training set Testing set Train+g set

Fold 3 Traimrg set Testing set ‘ Training set

Fold 4 Training set Testing set

0% 25% 50% 5%

https://www.mathworks.com/discovery/cross-validation.html

100%
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Cross-Validation (good practice)

https://scikit-learn.org/stable/modules/cross_validation.html



