CSCI 5521: Machine Learning Fundamentals (Fall 2023)

Supervised Learning (Chpt 2)

Rui Kuang

Department of Computer Science and Engineering
University of Minnesota

Key Concepts

- Formulation of supervised learning: classification and regression
- First example of classification algorithms: perceptron learning
- Fundamental learning theory: model complexity and VC dimension
- Multiclass classifier: K-nearest neighbors (KNN)
- Line regression by least squares
- Trade-off by model complexity and crossvalidation

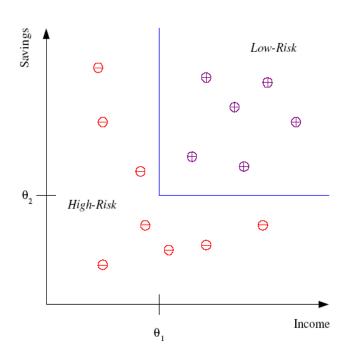
Key Concepts

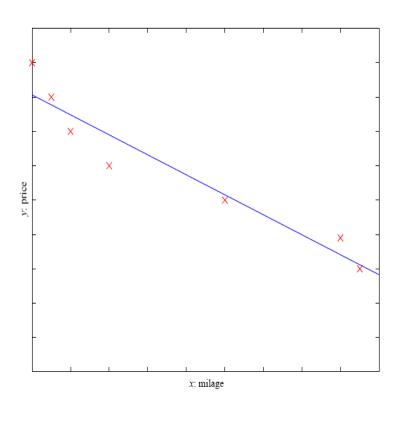
- Formulation of supervised learning: classification and regression
- First example of classification algorithms: perceptron learning
- Fundamental learning theory: model complexity and VC dimension
- Multiclass classifier: K-nearest neighbors (KNN)
- Line regression by least squares
- Trade-off by model complexity and crossvalidation

Supervised Learning

Classification

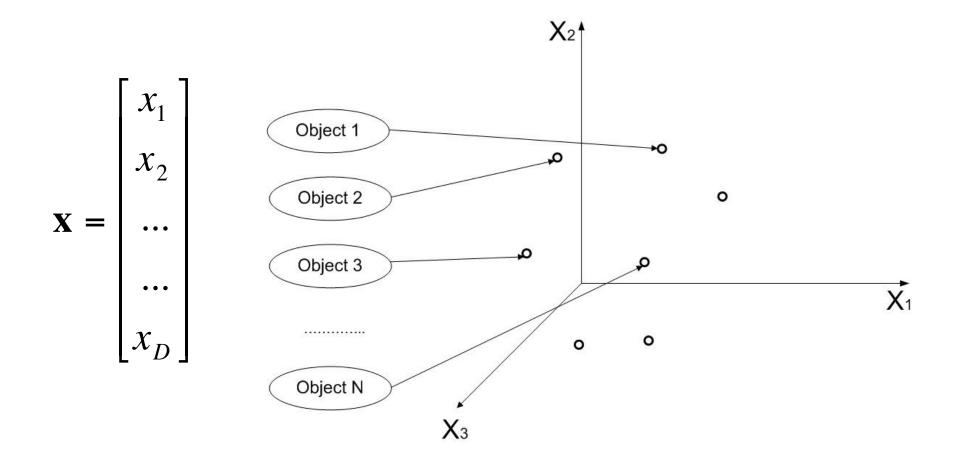
Regression





NA.

Input Feature Space



Supervised Learning

Classification

Regression

Data:

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$$

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$$

Output:
$$r^{t} = \begin{cases} 1 \text{ if } \mathbf{x} \text{ is positive} \\ 0/-1 \text{ if } \mathbf{x} \text{ is negative} \end{cases}$$

$$r^t \in \Re$$

(Class label)

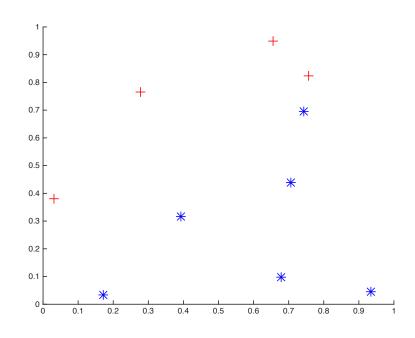
(Response)

Remember the notations on page xxiii-page xxiv in EA book

Classification

Data:
$$X = \{\mathbf{x}^t, r^t\}_{t=1}^N$$
 Output: $r = \begin{cases} 1 \text{ if } \mathbf{x} \text{ is positive} \\ 0/-1 \text{ if } \mathbf{x} \text{ is negative} \end{cases}$

X ₁	X ₂	r
0.934	0.046	-1
0.679	0.097	-1
0.758	0.823	1
0.743	0.695	-1
0.392	0.317	-1
0.655	0.950	1
0.171	0.034	-1
0.706	0.439	-1
0.032	0.382	1
0.277	0.766	1



Learning a Class from Examples

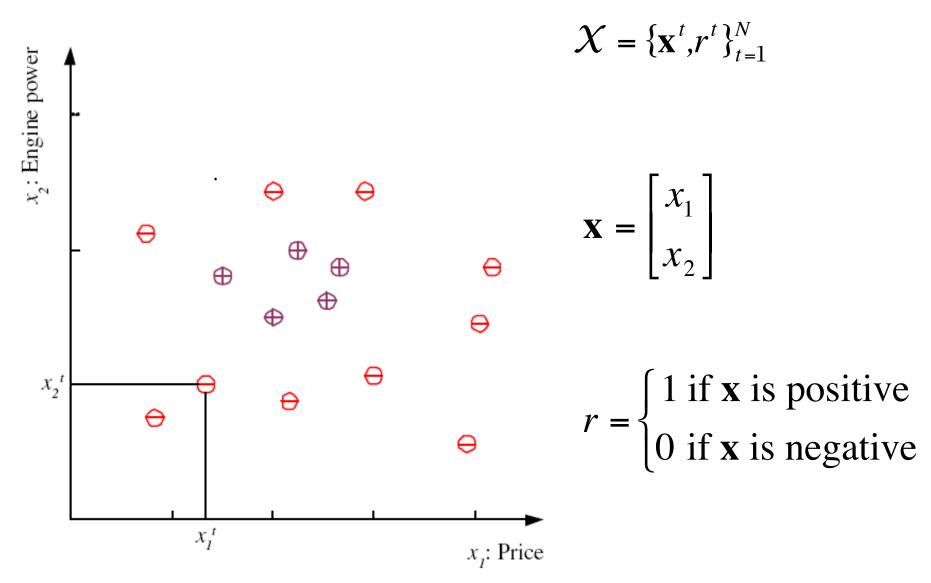
- Class C of a "family car"
 - □ Prediction: Is car *x* a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (–) examples

Input representation:

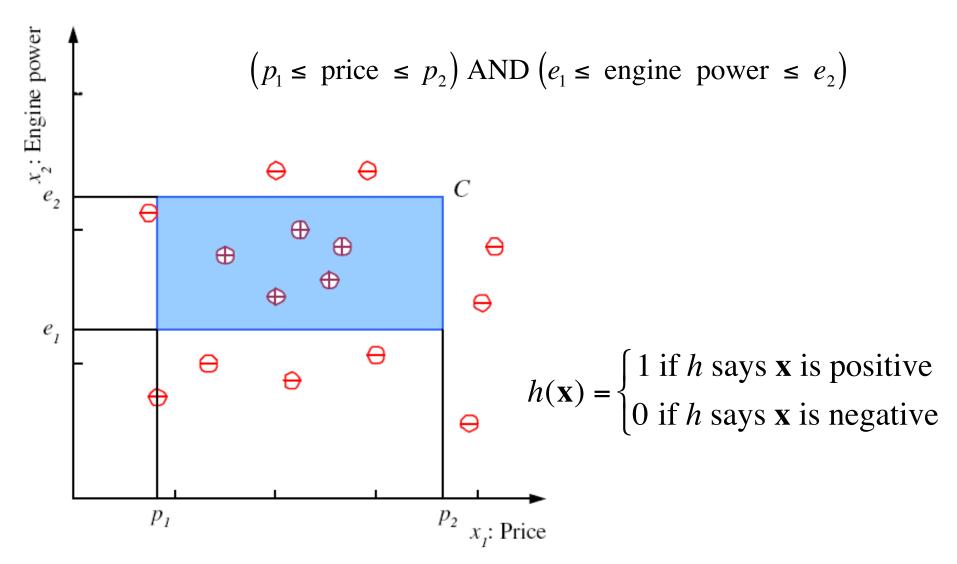
 x_1 : price, x_2 : engine power

Training set X



Lecture Notes for E Alpaydin 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

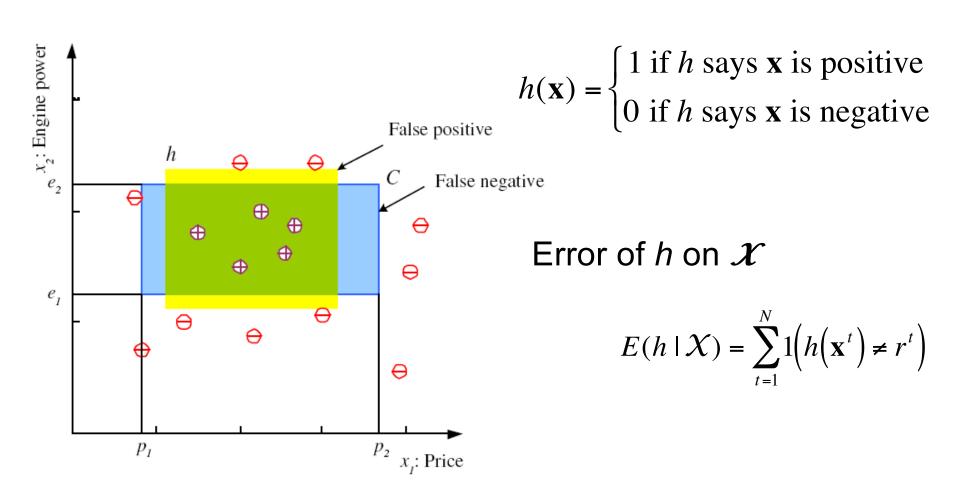
Class in a Rectangle



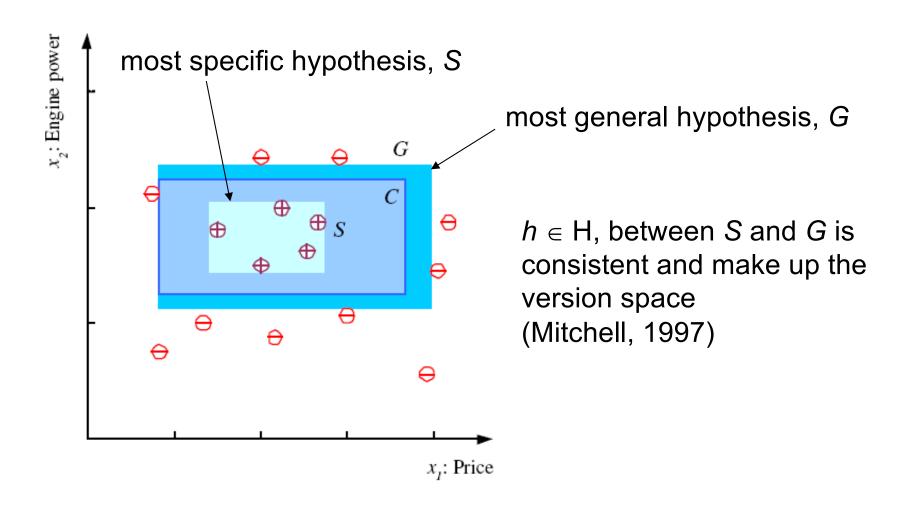
Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Hypothesis class ${\mathcal H}$

Consider \mathcal{H} : the set of all rectangles



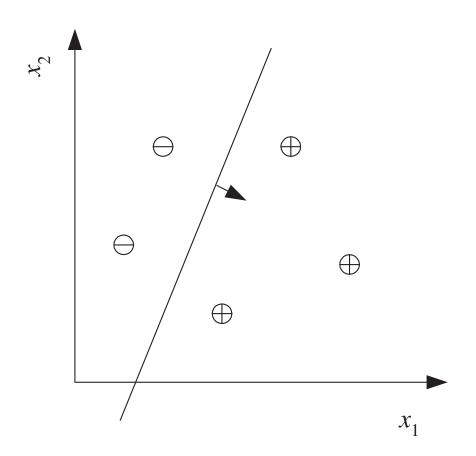
Version Space



Key Concepts

- Formulation of supervised learning: classification and regression
- First example of classification algorithms:
 perceptron learning
- Fundamental learning theory: model complexity and VC dimension
- Multiclass classifier: K-nearest neighbors (KNN)
- Line regression by least squares
- Trade-off by model complexity and crossvalidation

Linear Classifier



 $h(x) = \langle w, x \rangle + b$ is a linear classifier

h(x)>0 positive h(x)<0 negative

 $h \in H, H$?

MA.

Perceptron Learning

- Perceptron algorithm, Rosenblatt, 1957.
- Initialization:

$$w = 0$$

Iterate until converge (no mistake)

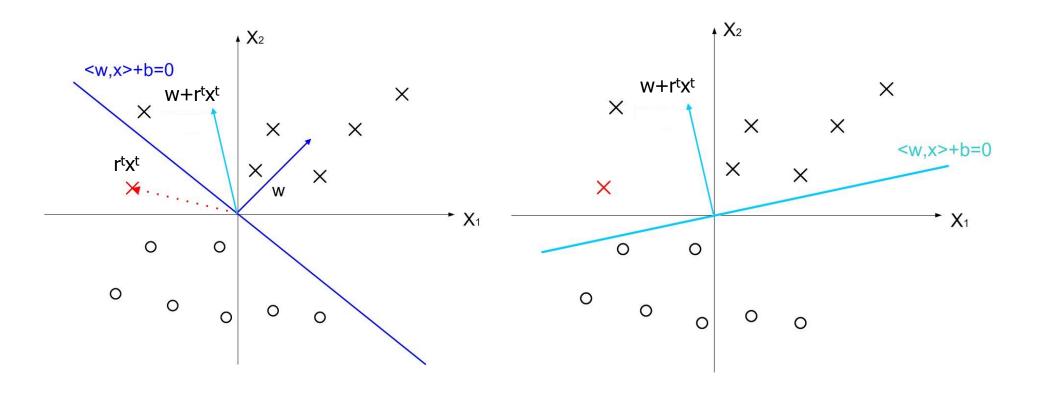
for each example
$$(\mathbf{x}^t, r^t)$$
:

$$if(<\mathbf{w},\mathbf{x}^t>*r^t\leq 0)$$

$$\mathbf{W} = \mathbf{W} + r^t \mathbf{X}^t$$

NA.

Perceptron Learning

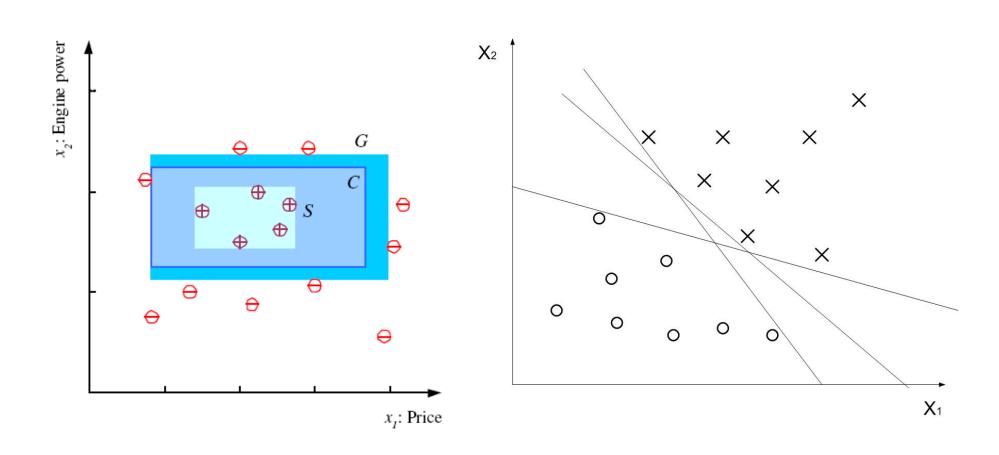


Key Concepts

- Formulation of supervised learning: classification and regression
- First example of classification algorithms: perceptron learning
- Fundamental learning theory: model complexity and VC dimension
- Multiclass classifier: K-nearest neighbors (KNN)
- Line regression by least squares
- Trade-off by model complexity and crossvalidation

NA.

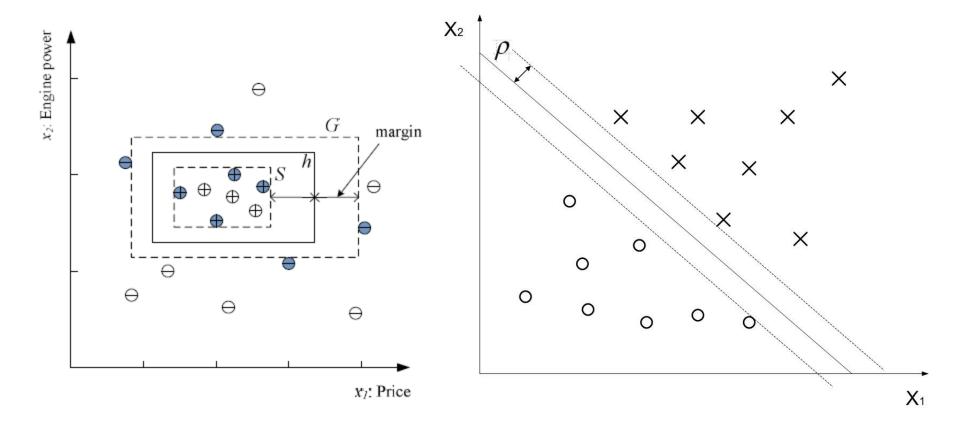
Best in the Version Space



100

Margin

- Choose h with largest margin
- Why?



Model Capacity

Different models have different capacity meaning the ability to handle more complex data.

- How to measure model capacity?
- The maximum number of data points that can be classified perfectly in any labeling.

VC (Vapnik Chervonenkis) Dimension

■ N points can be labeled in 2^N ways as +/—

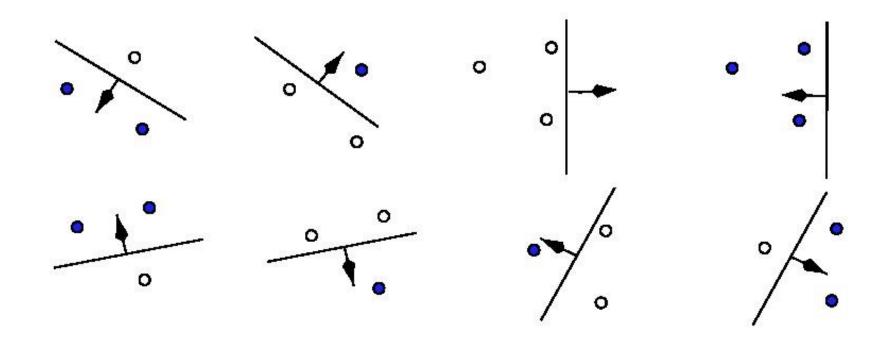
■ In a particular arrangement, \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of the 2^N ways:

$$VC(\mathcal{H}) = N$$

ŊΑ

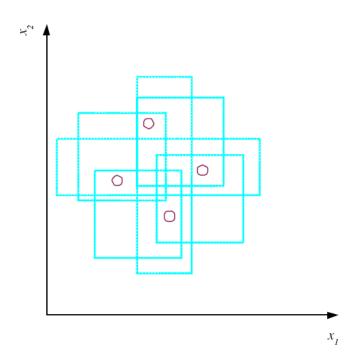
VC Dimension

How many points can be shattered by a line?



VC (Vapnik Chervonenkis) Dimension

How about axis-aligned rectangles?



VC Summary

- The capacity of function is measured by the number of data points that can be shattered by the function.
- VC dimension can be motived by the proof of No-Free-Lunch theorem for PAC learning theory (section 2.3 EA book).
- Rectangle classifier in 2-D space: 4.
- A line: 3.
- More ...

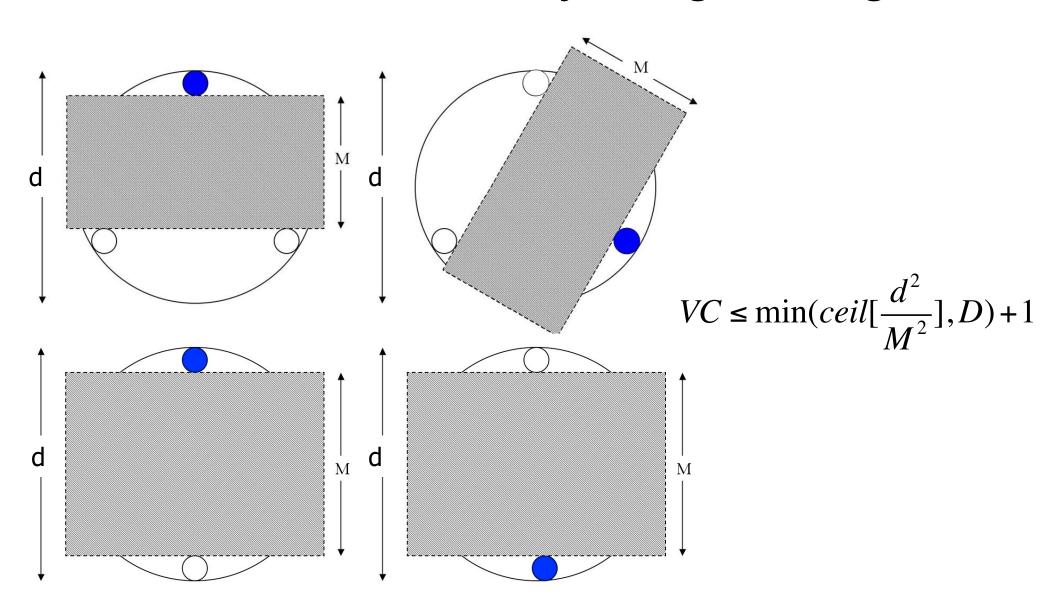
VC Dimension

- More generally, in R^D space, what is the VC of a hyperplane?
- What is the VC of a triangle classifier?
- Is an algorithm that can shatter only 4 or 3 data points useful?

How easy it is to determine the VC dimension for the hypothesis class?

100

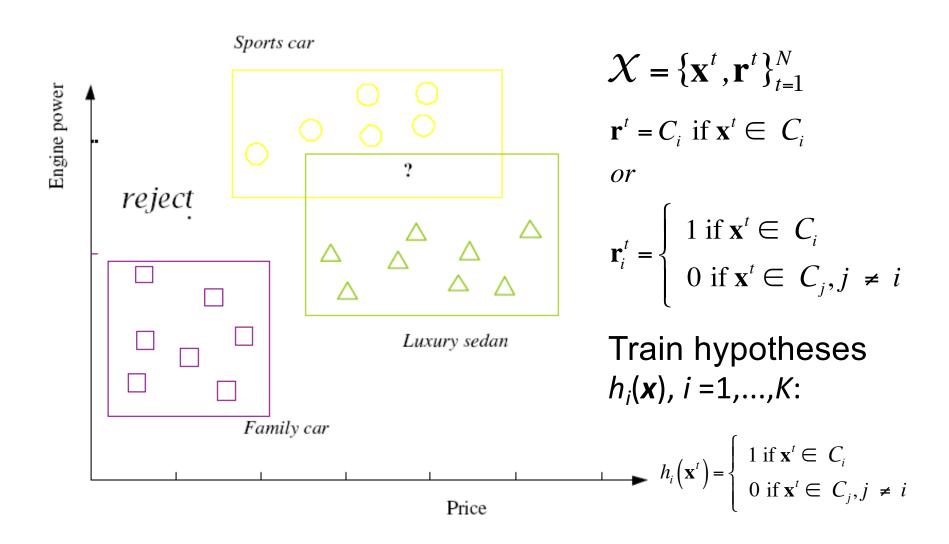
VC Dimension: Why Large Margin



Key Concepts

- Formulation of supervised learning: classification and regression
- First example of classification algorithms: perceptron learning
- Fundamental learning theory: model complexity and VC dimension
- Multiclass classifier: K-nearest neighbors (KNN)
- Line regression by least squares
- Trade-off by model complexity and crossvalidation

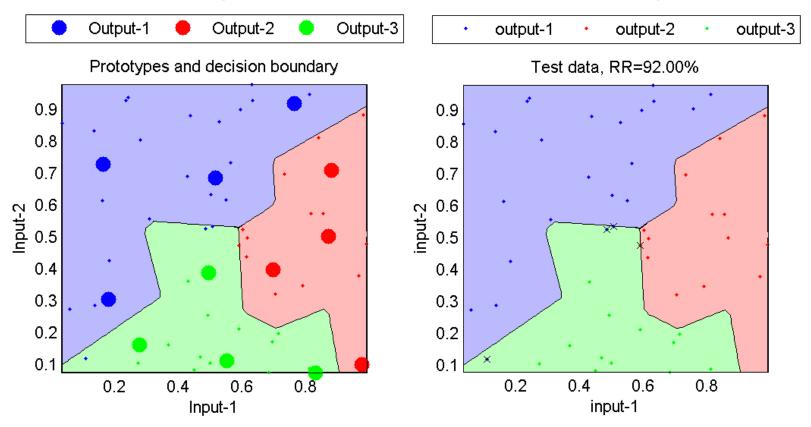
Multiple Classes, C_i i=1,...,K



KNN Classification

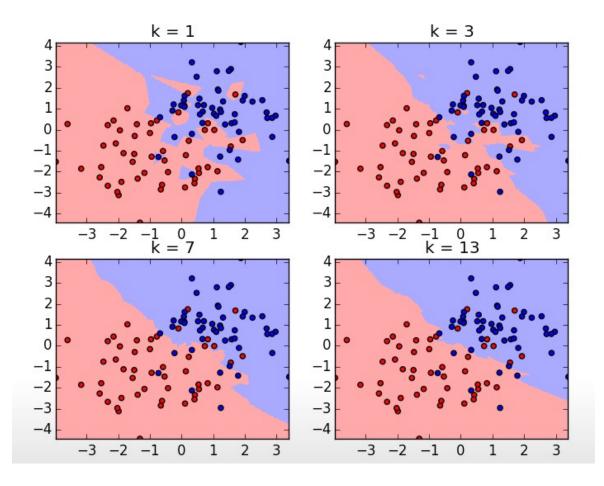
K nearest neighbors

$$h_i(\mathbf{x}) = \left| \left\{ (\mathbf{x}^t, \mathbf{r}^t) \mid r_i^t = 1 \ \& \mathbf{x}^t \in N_{\mathbf{x}}^{(k)} \right\} \right|$$



http://mirlab.org/jang/books/dcpr/prKnnc.asp?title=5-2%20K-nearest-neighbor%20Classifiers&language=english

How to Choose K for KNN?



- What is the VC dimension of KNN?
- Is VC proportional to the # of parameters (appeared complexity)?

Key Concepts

- Formulation of supervised learning: classification and regression
- First example of classification algorithms: perceptron learning
- Fundamental learning theory: model complexity and VC dimension
- Multiclass classifier: K-nearest neighbors (KNN)
- Line regression by least squares
- Trade-off by model complexity and crossvalidation

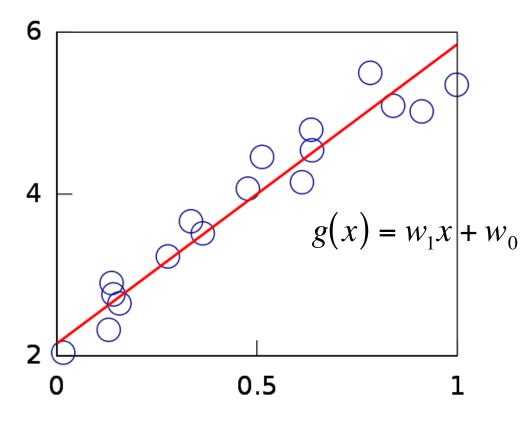
Regression

$$\mathcal{X} = \left\{ x^{t}, r^{t} \right\}_{t=1}^{N}, \quad r^{t} \in \Re$$

$$r^{t} = g\left(x^{t}\right) + \varepsilon, \ (\varepsilon: \text{ random noise})$$

Training Error:

$$E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - g(x^{t}) \right]^{2}$$

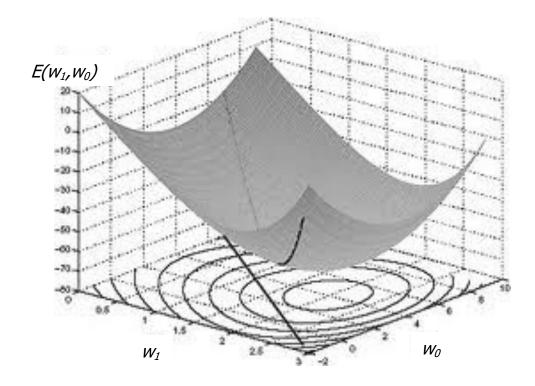


$$E(w_1, w_0 \mid X) = \frac{1}{N} \sum_{t=1}^{N} \left[r^t - (w_1 x^t + w_0) \right]^2$$

Regression

How does the error function look like?

$$E(w_1, w_0 \mid X) = \frac{1}{N} \sum_{t=1}^{N} \left[r^t - (w_1 x^t + w_0) \right]^2$$



Ŋ4

Regression

Find the g to minimize training error

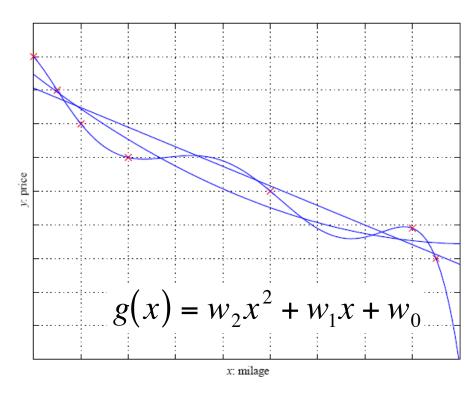
$$\begin{split} E(w_{1}, w_{0} \mid \mathcal{X}) &= \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - \left(w_{1} x^{t} + w_{0} \right) \right]^{2} \\ &\frac{\partial E(w_{1}, w_{0} \mid \mathcal{X})}{\partial w_{0}} = \frac{1}{N} \sum_{t=1}^{N} \left[\left(r^{t} - w_{1} x^{t} - w_{0} \right) (-1) \right] = 0 \\ &\frac{\partial E(w_{1}, w_{0} \mid \mathcal{X})}{\partial w_{1}} = \frac{1}{N} \sum_{t=1}^{N} \left[\left(r^{t} - w_{1} x^{t} - w_{0} \right) (-x^{t}) \right] = 0 \end{split}$$

$$w_1 = \frac{\sum_{t} x^t r^t - N\overline{x}\overline{r}}{\sum_{t} (x^t)^2 - N\overline{x}^2}, w_0 = \overline{r} - w_1 \overline{x}$$

Polynomial Regression

Is polynomial fitting very different?

$$g(x) = \sum_{i=1}^{P} w_{p}(x)^{p} + w_{0}$$



It is the same as linear regression with a polynomial mapping.

$$g(x) = w^{T} x$$

$$w = [w_{P}, ..., w_{1}, w_{0}]$$

$$x = [x^{P}, ..., x^{1}, x^{0}]$$

M

Summary of Supervised Learning

1. Model:
$$g(\mathbf{x} \mid \theta)$$
 $g(x) = w_1 x + w_0$

2. Loss function:
$$E(\theta \mid X) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$$

$$E(h \mid \mathcal{X}) = \sum_{t=1}^{N} 1(h(\mathbf{x}^{t}) \neq r^{t}) \qquad E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - g(x^{t}) \right]^{2}$$

3. Optimization procedure: $\theta^* = \arg \min_{\theta} E(\theta \mid X)$

Algorithms: KNN, percepton, linear regression

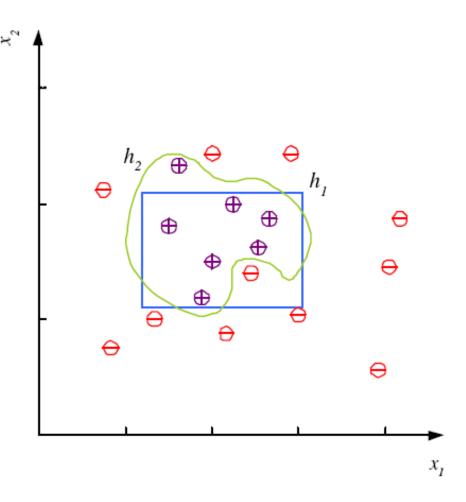
Key Concepts

- Formulation of supervised learning: classification and regression
- First example of classification algorithms: perceptron learning
- Fundamental learning theory: model complexity and VC dimension
- Multiclass classifier: K-nearest neighbors (KNN)
- Line regression by least squares
- Trade-off by model complexity and crossvalidation

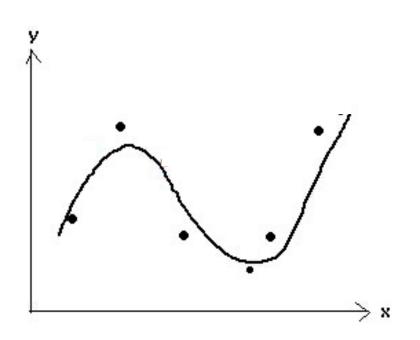
Noise and Model Complexity

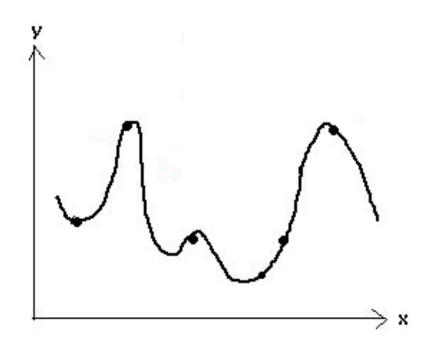
Data is not perfect

- Data recording might not be perfect (shifted data points)
- Wrong labeling of the data
- There might be additional unobervable hidden variables.



Noise and Model Complexity





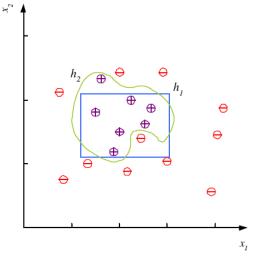
Options:

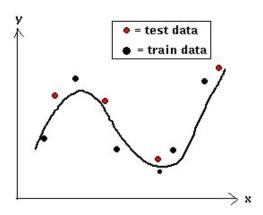
- Simple model with training errors
- Complex comdel with no training error

Noise and Model Complexity

Given similar training error use the simpler one

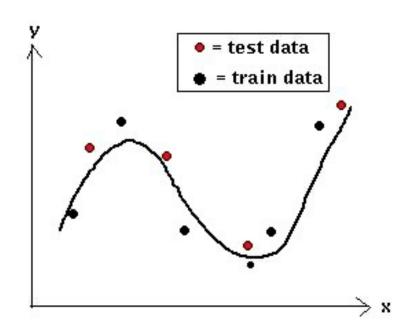
- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)

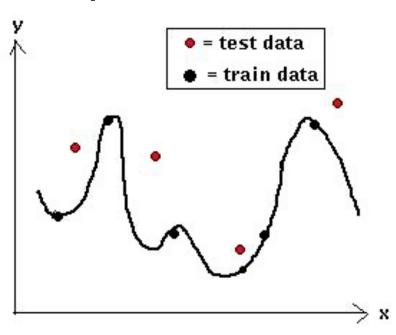




Generatlization and Overfitting

- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f





MA.

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- Given d binary inputs, there are at most 2^D samples, and 2^{2^D} binary functions
- Each sample eliminates half of the functions;
- Thus, N samples leaves $2^{2^{D}-N}$ viable functions
- Not possible to check all functions. Need for inductive bias, assumptions about \mathcal{H}

Cross-Validation

- To better estimate generalization error, we need data unseen during training. We split the data as
 - □ Training set (50%)
 - □ Validation set (25%)
 - □ Test set (25%)
- Resampling when there is few data

M

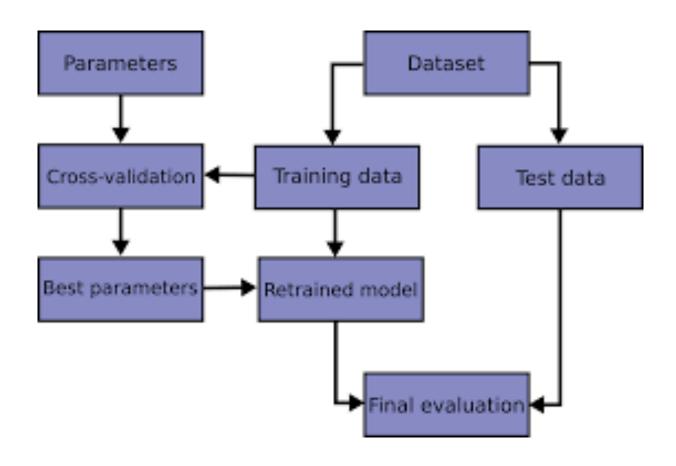
Cross-Validation

4-fold validation (k=4)

https://www.mathworks.com/discovery/cross-validation.html

м

Cross-Validation (good practice)



https://scikit-learn.org/stable/modules/cross_validation.html