38 lines
No EOL
876 B
Matlab
38 lines
No EOL
876 B
Matlab
% CSCI 5521 Introduction to Machine Learning
|
|
% Rui Kuang
|
|
% Run perceptron on random data points in two classes
|
|
|
|
% n = 200; %set the number of data points
|
|
% mydata = rand(n,2);
|
|
%
|
|
% shiftidx = abs(mydata(:,1)-mydata(:,2))>0.00005;
|
|
% mydata = mydata(shiftidx,:);
|
|
% myclasses = mydata(:,1)>mydata(:,2); % labels
|
|
% n = size(mydata,1);
|
|
% X = [mydata ones(1,n)']'; Y=myclasses;
|
|
% Y = Y * 2 -1;
|
|
%
|
|
% % init weigth vector
|
|
% %%% w = [mean(mydata) 0]';
|
|
% w = [1 0 0];
|
|
|
|
for i = 1:1
|
|
%%% w=rand(1,3)'
|
|
w = [0.6842
|
|
0.5148
|
|
0]
|
|
w(3,1)=0%go through the origin for visualization
|
|
% call perceptron
|
|
wtag=perceptron(X,Y,w,10);
|
|
end
|
|
|
|
% call perceptron
|
|
% wtag=perceptron(X,Y,w);
|
|
% predict
|
|
ytag=wtag'*X;
|
|
|
|
% plot prediction over origianl data
|
|
|
|
%plot(X(1,ytag<0),X(2,ytag<0),'bo')
|
|
%plot(X(1,ytag>0),X(2,ytag>0),'ro')
|
|
%legend('class -1','class +1','pred -1','pred +1') |