csci5521/quiz/5/main.m
2023-11-23 23:44:01 -06:00

81 lines
No EOL
2.1 KiB
Matlab

clear all;clc
%% Only modify the codes in the Define Network Architecture section.
%% Load and Explore Image Data
% training data
digitDatasetPath = 'optdigits_train';
imds_train = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
figure;
perm = randperm(1873,20);
for i = 1:20
subplot(4,5,i);
imshow(imds_train.Files{perm(i)});
end
labelCount = countEachLabel(imds_train)
img = readimage(imds_train,1);
size(img)
% validation data
digitDatasetPath = 'optdigits_valid';
imds_valid = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
figure;
perm = randperm(1873,20);
for i = 1:20
subplot(4,5,i);
imshow(imds_valid.Files{perm(i)});
end
labelCount = countEachLabel(imds_valid)
img = readimage(imds_valid,1);
size(img)
% testing data
digitDatasetPath = 'optdigits_test';
imds_test = imageDatastore(digitDatasetPath, ...
'IncludeSubfolders',true,'LabelSource','foldernames');
figure;
perm = randperm(1873,20);
for i = 1:20
subplot(4,5,i);
imshow(imds_test.Files{perm(i)});
end
labelCount = countEachLabel(imds_test)
img = readimage(imds_test,1);
size(img)
%%%%%%%%%%%%%%%%%%%%%%%% Modify the codes here %%%%%%%%%%%%%%%%%%%%%%
%% Define Network Architecture
%%%%%%%%%%%%%%%%%%%%%%%% Modify the codes here %%%%%%%%%%%%%%%%%%%%%%
% network 1
layers = [ ...
imageInputLayer([8 8 1])
convolution2dLayer(4,10,'Padding','same')
%batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
%% Specify training/validation options
options = trainingOptions('adam','MaxEpochs',10, ...
'ValidationData',imds_valid, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
%% Train the network
net = trainNetwork(imds_train,layers,options);
%% Predict the labels of new data and calculate the classification accuracy.
YPred = classify(net,imds_test);
Ytest = imds_test.Labels;
accuracy = sum(YPred == Ytest)/numel(Ytest)