csci5607/assignment-1b/src/scene/cylinder.rs

205 lines
6 KiB
Rust
Raw Normal View History

2023-02-06 03:52:42 +00:00
use anyhow::Result;
use nalgebra::Vector3;
use ordered_float::NotNan;
use crate::ray::Ray;
use crate::utils::compute_rotation_matrix;
2023-02-15 07:22:42 +00:00
use super::{data::ObjectKind, illumination::IntersectionContext};
2023-02-06 03:52:42 +00:00
#[derive(Debug)]
pub struct Cylinder {
pub center: Vector3<f64>,
pub direction: Vector3<f64>,
pub radius: f64,
pub length: f64,
}
impl ObjectKind for Cylinder {
/// Given a cylinder, returns the first time at which this ray intersects the
/// cylinder.
///
/// If there is no intersection point, returns None.
fn intersects_ray_at(
&self,
ray: &Ray,
) -> Result<Option<IntersectionContext>> {
// Determine rotation matrix for turning the cylinder upright along the
// Z-axis
let target_direction = Vector3::new(0.0, 0.0, 1.0);
let rotation_matrix =
compute_rotation_matrix(self.direction, target_direction)?;
let inverse_rotation_matrix =
rotation_matrix.try_inverse().ok_or_else(|| {
anyhow!("Rotation matrix for some reason does not have an inverse?")
})?;
// Transform all parameters according to this rotation matrix
let rotated_cylinder_center = rotation_matrix * self.center;
let rotated_ray_origin = rotation_matrix * ray.origin;
let rotated_ray_direction = rotation_matrix * ray.direction;
// Now that we know the cylinder is upright, we can start checking against
// the formula:
//
// (ox + t*rx - cx)^2 + (oy + t*ry - cy)^2 = r^2
//
// where o{xy} is the ray origin, r{xy} is the ray direction, and c{xy} is
// the cylinder center. The z will be taken care of after the fact. To
// solve, we must put it into the form At^2 + Bt + c = 0. The variables
// are:
//
// A: rx^2 + ry^2
// B: 2(rx(ox - cx) + ry(oy - cy))
// C: (cx - ox)^2 + (cy - oy)^2 - r^2
let (a, b, c) = {
let o = rotated_ray_origin;
let r = rotated_ray_direction;
let c = rotated_cylinder_center;
(
r.x.powi(2) + r.y.powi(2),
2.0 * (r.x * (o.x - c.x) + r.y * (o.y - c.y)),
(c.x - o.x).powi(2) + (c.y - o.y).powi(2) - self.radius.powi(2),
)
};
let discriminant = b * b - 4.0 * a * c;
let possible_side_solutions = match discriminant {
// Discriminant < 0, means the equation has no solutions.
d if d < 0.0 => vec![],
// Discriminant == 0
d if d == 0.0 => vec![-b / 2.0 * a],
// Discriminant > 0, 2 solutions available.
d if d > 0.0 => {
vec![
(-b + discriminant.sqrt()) / (2.0 * a),
(-b - discriminant.sqrt()) / (2.0 * a),
]
}
// Probably hit some NaN or Infinity value due to faulty inputs...
_ => bail!("Invalid determinant value: {discriminant}"),
};
// Filter out solutions that don't have a valid Z position.
let side_solutions = possible_side_solutions.into_iter().filter_map(|t| {
let ray_point = ray.eval(t);
let rotated_ray_point = rotation_matrix * ray_point;
let z = rotated_ray_point.z - rotated_cylinder_center.z;
// Check to see if z is between -len/2 and len/2
if z.abs() > self.length / 2.0 {
return None;
}
let time = NotNan::new(t).ok()?;
// The point on the center of the cylinder that corresponds to the z-axis
// point of the intersection
let center_at_z = {
let mut center_point = rotation_matrix * ray_point;
center_point.x = rotated_cylinder_center.x;
center_point.y = rotated_cylinder_center.y;
inverse_rotation_matrix * center_point
};
let normal = (ray_point - center_at_z).normalize();
Some(IntersectionContext {
time,
point: ray_point,
normal,
})
});
// We also need to add solutions for the two ends of the cylinder, which
// uses a similar method except backwards: check intersection points
// with the correct z-plane and then see if the points are within the
// circle.
//
// Luckily, this means we only need to care about one dimension at first,
// and don't need to perform the quadratic equation method above.
//
// oz + t * rz = cz +- (len / 2)
// t = (-oz + cz +- (len / 2)) / rz
let possible_z_intersections = {
let o = rotated_ray_origin;
let r = rotated_ray_direction;
let c = rotated_cylinder_center;
if r.z == 0.0 {
2023-02-13 05:46:54 +00:00
Vec::new() // No solutions here
2023-02-06 03:52:42 +00:00
} else {
vec![
(-o.z + c.z + self.length / 2.0) / r.z,
(-o.z + c.z - self.length / 2.0) / r.z,
]
}
};
let end_solutions = possible_z_intersections.into_iter().filter_map(|t| {
let ray_point = ray.eval(t);
let rotated_point = rotation_matrix * ray_point;
// Filter out all the solutions where the intersection point does not lie
// in the circle
if rotated_point.x.powi(2) + rotated_point.y.powi(2) > self.radius.powi(2)
{
return None;
}
let normal_rotated =
Vector3::new(0.0, 0.0, rotated_point.z - rotated_cylinder_center.z)
.normalize();
let normal = inverse_rotation_matrix * normal_rotated;
let time = NotNan::new(t).ok()?;
Some(IntersectionContext {
time,
point: ray_point,
normal,
})
});
let solutions = side_solutions
.into_iter()
.chain(end_solutions.into_iter())
// Remove any t < 0, since that means it's behind the viewer and we
// can't see it.
.filter(|ctx| *ctx.time >= 0.0);
// Return the minimum solution
Ok(solutions.min_by_key(|ctx| ctx.time))
}
}
2023-02-13 05:46:54 +00:00
#[cfg(test)]
mod tests {
use nalgebra::Vector3;
use crate::{ray::Ray, scene::data::ObjectKind};
use super::Cylinder;
#[test]
fn test_cylinder() {
let cylinder = Cylinder {
center: Vector3::new(0.0, 0.0, 0.0),
direction: Vector3::new(0.0, 1.0, 0.0),
radius: 3.0,
length: 4.0,
};
let eye = Vector3::new(0.0, 3.0, 3.0);
let end = Vector3::new(0.0, 2.0, 2.0);
let ray = Ray::from_endpoints(eye, end);
let res = cylinder.intersects_ray_at(&ray);
panic!("Result: {res:?}");
}
}