Produce images
This commit is contained in:
parent
0000009017
commit
0000010056
10 changed files with 252 additions and 52 deletions
1
assignment-1/.gitignore
vendored
1
assignment-1/.gitignore
vendored
|
@ -1 +1,2 @@
|
|||
/target
|
||||
*.ppm
|
||||
|
|
26
assignment-1/Cargo.lock
generated
26
assignment-1/Cargo.lock
generated
|
@ -14,7 +14,9 @@ version = "0.1.0"
|
|||
dependencies = [
|
||||
"anyhow",
|
||||
"clap",
|
||||
"itertools",
|
||||
"num",
|
||||
"ordered-float",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -72,6 +74,12 @@ dependencies = [
|
|||
"os_str_bytes",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "either"
|
||||
version = "1.8.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7fcaabb2fef8c910e7f4c7ce9f67a1283a1715879a7c230ca9d6d1ae31f16d91"
|
||||
|
||||
[[package]]
|
||||
name = "errno"
|
||||
version = "0.2.8"
|
||||
|
@ -130,6 +138,15 @@ dependencies = [
|
|||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "itertools"
|
||||
version = "0.10.5"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473"
|
||||
dependencies = [
|
||||
"either",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "libc"
|
||||
version = "0.2.139"
|
||||
|
@ -227,6 +244,15 @@ version = "1.17.0"
|
|||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "6f61fba1741ea2b3d6a1e3178721804bb716a68a6aeba1149b5d52e3d464ea66"
|
||||
|
||||
[[package]]
|
||||
name = "ordered-float"
|
||||
version = "3.4.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d84eb1409416d254e4a9c8fa56cc24701755025b458f0fcd8e59e1f5f40c23bf"
|
||||
dependencies = [
|
||||
"num-traits",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "os_str_bytes"
|
||||
version = "6.4.1"
|
||||
|
|
|
@ -8,4 +8,6 @@ edition = "2021"
|
|||
[dependencies]
|
||||
anyhow = "1.0.68"
|
||||
clap = { version = "4.1.4", features = ["derive"] }
|
||||
itertools = "0.10.5"
|
||||
num = { version = "0.4.0", features = ["serde"] }
|
||||
ordered-float = "3.4.0"
|
||||
|
|
35
assignment-1/src/image.rs
Normal file
35
assignment-1/src/image.rs
Normal file
|
@ -0,0 +1,35 @@
|
|||
use std::io::{Result, Write};
|
||||
|
||||
/// A 24-bit pixel represented by a red, green, and blue value.
|
||||
#[derive(Clone, Copy, Default, Debug)]
|
||||
pub struct Pixel(pub u8, pub u8, pub u8);
|
||||
|
||||
/// A representation of an image
|
||||
pub struct Image {
|
||||
/// Width in pixels
|
||||
pub(crate) width: usize,
|
||||
|
||||
/// Height in pixels
|
||||
pub(crate) height: usize,
|
||||
|
||||
/// Pixel data in row-major form.
|
||||
pub(crate) data: Vec<Pixel>,
|
||||
}
|
||||
|
||||
impl Image {
|
||||
/// Write the image in PPM format to a file.
|
||||
pub fn write(&self, mut w: impl Write) -> Result<()> {
|
||||
// Header
|
||||
let header = format!("P3 {} {} 255\n", self.width, self.height);
|
||||
w.write_all(header.as_bytes())?;
|
||||
|
||||
// Pixel data
|
||||
for pixel in self.data.iter() {
|
||||
let Pixel(red, green, blue) = pixel;
|
||||
let pixel = format!("{red} {green} {blue}\n");
|
||||
w.write_all(pixel.as_bytes())?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -54,11 +54,17 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
|
|||
|
||||
"hfov" => scene.hfov = parts[0],
|
||||
"bkgcolor" => scene.bkg_color = read_vec3()?,
|
||||
"mtlcolor" => material_color = Some(read_vec3()?),
|
||||
|
||||
"mtlcolor" => {
|
||||
let idx = scene.material_colors.len();
|
||||
material_color = Some(idx);
|
||||
scene.material_colors.push(read_vec3()?);
|
||||
},
|
||||
|
||||
"sphere" => scene.objects.push(Object::Sphere(Sphere {
|
||||
center: read_vec3()?,
|
||||
radius: parts[3],
|
||||
material: material_color.unwrap(),
|
||||
})),
|
||||
_ => bail!("Unknown keyword {keyword}"),
|
||||
}
|
||||
|
|
|
@ -1,21 +1,30 @@
|
|||
#[macro_use]
|
||||
extern crate anyhow;
|
||||
|
||||
mod image;
|
||||
mod input_file;
|
||||
mod ray;
|
||||
mod scene_data;
|
||||
mod vec3;
|
||||
mod view;
|
||||
|
||||
use std::fs::File;
|
||||
use std::path::PathBuf;
|
||||
|
||||
use anyhow::Result;
|
||||
use clap::Parser;
|
||||
use itertools::Itertools;
|
||||
use ordered_float::NotNan;
|
||||
|
||||
use crate::image::{Image, Pixel};
|
||||
use crate::input_file::parse_input_file;
|
||||
use crate::ray::Ray;
|
||||
use crate::scene_data::Object;
|
||||
use crate::vec3::Vec3;
|
||||
use crate::view::Rect;
|
||||
|
||||
const ARBITRARY_D: f64 = 2.0;
|
||||
|
||||
/// Simple raycaster.
|
||||
#[derive(Parser)]
|
||||
#[clap(author, version, about, long_about = None)]
|
||||
|
@ -26,14 +35,20 @@ struct Opt {
|
|||
///
|
||||
/// imsize [width] [height]
|
||||
///
|
||||
/// Where `imsize' is a keyword, and `width' and `height' are integer values
|
||||
/// denoting the desired size of the image to be generated.
|
||||
/// Where `imsize' is a keyword, and `width' and `height' are integer values denoting the desired
|
||||
/// size of the image to be generated.
|
||||
#[clap()]
|
||||
input_path: PathBuf,
|
||||
|
||||
#[clap()]
|
||||
output_path: Option<PathBuf>,
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let opt = Opt::parse();
|
||||
let out_file = opt
|
||||
.output_path
|
||||
.unwrap_or_else(|| opt.input_path.with_extension("ppm"));
|
||||
|
||||
let scene = parse_input_file(&opt.input_path)?;
|
||||
println!("Scene: {scene:?}");
|
||||
|
@ -42,20 +57,88 @@ fn main() -> Result<()> {
|
|||
let u = Vec3::cross(scene.view_dir, scene.up_dir).unit();
|
||||
let v = Vec3::cross(u, scene.view_dir).unit();
|
||||
|
||||
// Compute dimensions of viewing window based on field of view
|
||||
let viewing_width = {
|
||||
// Divide the angle in 2 since we are trying to use trig rules so we must get it from a right
|
||||
// triangle
|
||||
let half_hfov = scene.hfov / 2.0;
|
||||
|
||||
// tan(hfov / 2) = w / 2d
|
||||
let w_over_2d = half_hfov.tan();
|
||||
|
||||
// To find the viewing width we must multiply by 2d now
|
||||
w_over_2d * 2.0 * ARBITRARY_D
|
||||
};
|
||||
let aspect_ratio = scene.image_width as f64 / scene.image_height as f64;
|
||||
let viewing_height = viewing_width / aspect_ratio;
|
||||
|
||||
// Compute viewing window corners
|
||||
// TODO: See slide 101
|
||||
// Also need to reverse calculation for d based on hfov
|
||||
let n = scene.view_dir.unit();
|
||||
let d = 1.0;
|
||||
#[rustfmt::skip] // Otherwise this line wraps over
|
||||
let view_window = Rect {
|
||||
upper_left: scene.eye_pos + n * d, // + ...
|
||||
upper_right: scene.eye_pos + n * d,
|
||||
lower_left: scene.eye_pos + n * d,
|
||||
lower_right: scene.eye_pos + n * d,
|
||||
upper_left: scene.eye_pos + n * ARBITRARY_D - u * (viewing_width / 2.0) + v * (viewing_height / 2.0),
|
||||
upper_right: scene.eye_pos + n * ARBITRARY_D + u * (viewing_width / 2.0) + v * (viewing_height / 2.0),
|
||||
lower_left: scene.eye_pos + n * ARBITRARY_D - u * (viewing_width / 2.0) - v * (viewing_height / 2.0),
|
||||
lower_right: scene.eye_pos + n * ARBITRARY_D + u * (viewing_width / 2.0) - v * (viewing_height / 2.0),
|
||||
};
|
||||
|
||||
// Translate image pixels to real-world 3d coords
|
||||
let pixel_translation = {
|
||||
let dx = view_window.upper_right - view_window.upper_left;
|
||||
let pixel_base_x = dx / scene.image_width as f64;
|
||||
|
||||
let dy = view_window.lower_left - view_window.upper_left;
|
||||
let pixel_base_y = dy / scene.image_height as f64;
|
||||
|
||||
move |px: usize, py: usize| {
|
||||
let x_component = view_window.upper_left + pixel_base_x * px as f64;
|
||||
let y_component = view_window.upper_left + pixel_base_y * py as f64;
|
||||
x_component + y_component
|
||||
}
|
||||
};
|
||||
|
||||
// Loop through every single pixel of the output file
|
||||
for (px, py) in (0..scene.image_width).zip(0..scene.image_height) {}
|
||||
let mut pixels =
|
||||
vec![Pixel::default(); scene.image_width * scene.image_width];
|
||||
for (px, py) in (0..scene.image_width).cartesian_product(0..scene.image_height) {
|
||||
let pixel_in_space = pixel_translation(px, py);
|
||||
let ray = Ray::from_endpoints(scene.eye_pos, pixel_in_space);
|
||||
|
||||
let earliest_intersection = scene
|
||||
.objects
|
||||
.iter()
|
||||
.filter_map(|object| {
|
||||
let sphere = match object {
|
||||
Object::Sphere(v) => v,
|
||||
_ => return None, // TODO: Handle other object types for intersection as well
|
||||
};
|
||||
|
||||
ray.intersects_at(sphere).map(|t| (t, sphere))
|
||||
})
|
||||
.min_by_key(|(t, _)| NotNan::new(*t).unwrap());
|
||||
|
||||
let pixel_color = match earliest_intersection {
|
||||
Some((_, sphere)) => scene.material_colors[sphere.material],
|
||||
// There was no intersection, so this should default to the background color
|
||||
None => scene.bkg_color,
|
||||
};
|
||||
|
||||
// println!("({px}, {py}): {intersection:?}\t{ray:?} {sphere:?}");
|
||||
|
||||
pixels[py * scene.image_height + px] = pixel_color.to_pixel();
|
||||
}
|
||||
|
||||
let image = Image {
|
||||
width: scene.image_width,
|
||||
height: scene.image_height,
|
||||
data: pixels,
|
||||
};
|
||||
|
||||
{
|
||||
let file = File::create(&out_file)?;
|
||||
image.write(file)?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
|
|
@ -5,52 +5,63 @@ use crate::vec3::Vec3;
|
|||
///
|
||||
/// That means at any time t: f64, the point represented by origin + direction * time occurs on the
|
||||
/// ray.
|
||||
#[derive(Debug)]
|
||||
pub struct Ray {
|
||||
origin: Vec3,
|
||||
direction: Vec3,
|
||||
}
|
||||
|
||||
impl Ray {
|
||||
/// Construct a ray from endpoints
|
||||
pub fn from_endpoints(start: Vec3, end: Vec3) -> Self {
|
||||
let delta = (end - start).unit();
|
||||
Ray {
|
||||
origin: start,
|
||||
direction: delta,
|
||||
}
|
||||
}
|
||||
|
||||
/// Evaluate the ray at a certain point in time, yielding a point
|
||||
pub fn eval(&self, time: f64) -> Vec3 {
|
||||
self.origin + self.direction * time
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a ray and a sphere, returns the first time at which this ray intersects the sphere.
|
||||
///
|
||||
/// If there is no intersection point, returns None.
|
||||
pub fn ray_intersection_time(ray: &Ray, sphere: &Sphere) -> Option<f64> {
|
||||
let a =
|
||||
ray.direction.x.powi(2) + ray.direction.y.powi(2) + ray.direction.z.powi(2);
|
||||
let b = 2.0
|
||||
* (ray.direction.x * (ray.origin.x - sphere.center.x)
|
||||
+ ray.direction.y * (ray.origin.y - sphere.center.y)
|
||||
+ ray.direction.z * (ray.origin.z - sphere.center.z));
|
||||
let c = (ray.origin.x - sphere.center.x).powi(2)
|
||||
+ (ray.origin.y - sphere.center.y).powi(2)
|
||||
+ (ray.origin.z - sphere.center.z).powi(2)
|
||||
- sphere.radius.powi(2);
|
||||
let discriminant = b * b - 4.0 * a * c;
|
||||
/// Given a sphere, returns the first time at which this ray intersects the sphere.
|
||||
///
|
||||
/// If there is no intersection point, returns None.
|
||||
pub fn intersects_at(&self, sphere: &Sphere) -> Option<f64> {
|
||||
let a = self.direction.x.powi(2)
|
||||
+ self.direction.y.powi(2)
|
||||
+ self.direction.z.powi(2);
|
||||
let b = 2.0
|
||||
* (self.direction.x * (self.origin.x - sphere.center.x)
|
||||
+ self.direction.y * (self.origin.y - sphere.center.y)
|
||||
+ self.direction.z * (self.origin.z - sphere.center.z));
|
||||
let c = (self.origin.x - sphere.center.x).powi(2)
|
||||
+ (self.origin.y - sphere.center.y).powi(2)
|
||||
+ (self.origin.z - sphere.center.z).powi(2)
|
||||
- sphere.radius.powi(2);
|
||||
let discriminant = b * b - 4.0 * a * c;
|
||||
|
||||
match discriminant {
|
||||
// Discriminant < 0, means the equation has no solutions.
|
||||
d if d < 0.0 => return None,
|
||||
match discriminant {
|
||||
// Discriminant < 0, means the equation has no solutions.
|
||||
d if d < 0.0 => return None,
|
||||
|
||||
// Discriminant == 0
|
||||
d if d == 0.0 => {
|
||||
return Some(-b / (2.0 * a));
|
||||
// Discriminant == 0
|
||||
d if d == 0.0 => {
|
||||
return Some(-b / (2.0 * a));
|
||||
}
|
||||
|
||||
d if d > 0.0 => {
|
||||
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
|
||||
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
|
||||
|
||||
return Some(solution_1.min(solution_2));
|
||||
}
|
||||
|
||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||
}
|
||||
|
||||
d if d > 0.0 => {
|
||||
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
|
||||
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
|
||||
|
||||
return Some(solution_1.min(solution_2));
|
||||
}
|
||||
|
||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -59,7 +70,7 @@ mod tests {
|
|||
use crate::scene_data::Sphere;
|
||||
use crate::vec3::Vec3;
|
||||
|
||||
use super::{ray_intersection_time, Ray};
|
||||
use super::Ray;
|
||||
|
||||
#[test]
|
||||
fn practice_problem_slide_154() {
|
||||
|
@ -72,7 +83,7 @@ mod tests {
|
|||
radius: 4.0,
|
||||
};
|
||||
|
||||
let point = ray_intersection_time(&ray, &sphere).map(|t| ray.eval(t));
|
||||
let point = ray.intersects_at(&sphere).map(|t| ray.eval(t));
|
||||
|
||||
// the intersection point in this case is (0, 0, -6)
|
||||
assert_eq!(point, Some(Vec3::new(0.0, 0.0, -6.0)));
|
||||
|
@ -90,6 +101,6 @@ mod tests {
|
|||
};
|
||||
|
||||
// oops! In this case, the ray does not intersect the sphere.
|
||||
assert_eq!(ray_intersection_time(&ray, &sphere), None);
|
||||
assert_eq!(ray.intersects_at(&sphere), None);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -4,6 +4,9 @@ use crate::vec3::Vec3;
|
|||
pub struct Sphere {
|
||||
pub center: Vec3,
|
||||
pub radius: f64,
|
||||
|
||||
/// Index into the scene's material color list
|
||||
pub material: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
|
@ -32,8 +35,6 @@ pub struct Scene {
|
|||
/// Background color
|
||||
pub bkg_color: Vec3,
|
||||
|
||||
/// Material color
|
||||
pub mtl_color: Vec3,
|
||||
|
||||
pub material_colors: Vec<Vec3>,
|
||||
pub objects: Vec<Object>,
|
||||
}
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
use std::ops::{Add, Mul};
|
||||
use std::ops::{Add, Div, Mul, Sub};
|
||||
|
||||
use num::Float;
|
||||
|
||||
use crate::image::Pixel;
|
||||
|
||||
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq)]
|
||||
pub struct Vec3<T = f64> {
|
||||
pub x: T,
|
||||
|
@ -37,6 +39,16 @@ impl<T: Float> Vec3<T> {
|
|||
}
|
||||
}
|
||||
|
||||
impl Vec3<f64> {
|
||||
/// Convert into an RGB color
|
||||
pub fn to_pixel(&self) -> Pixel {
|
||||
let r = (self.x * 256.0) as u8;
|
||||
let g = (self.y * 256.0) as u8;
|
||||
let b = (self.z * 256.0) as u8;
|
||||
Pixel(r, g, b)
|
||||
}
|
||||
}
|
||||
|
||||
/// Vector addition
|
||||
impl<T> Add<Vec3<T>> for Vec3<T>
|
||||
where
|
||||
|
@ -49,6 +61,18 @@ where
|
|||
}
|
||||
}
|
||||
|
||||
/// Vector subtraction
|
||||
impl<T> Sub<Vec3<T>> for Vec3<T>
|
||||
where
|
||||
T: Sub<T>,
|
||||
{
|
||||
type Output = Vec3<T::Output>;
|
||||
|
||||
fn sub(self, rhs: Vec3<T>) -> Self::Output {
|
||||
Vec3::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
|
||||
}
|
||||
}
|
||||
|
||||
/// Scalar multiplication
|
||||
impl<T, U> Mul<U> for Vec3<T>
|
||||
where
|
||||
|
@ -62,6 +86,19 @@ where
|
|||
}
|
||||
}
|
||||
|
||||
/// Scalar division
|
||||
impl<T, U> Div<U> for Vec3<T>
|
||||
where
|
||||
T: Div<U, Output = U>,
|
||||
U: Copy,
|
||||
{
|
||||
type Output = Vec3<U>;
|
||||
|
||||
fn div(self, rhs: U) -> Self::Output {
|
||||
Vec3::new(self.x / rhs, self.y / rhs, self.z / rhs)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::Vec3;
|
||||
|
|
|
@ -8,6 +8,4 @@ pub struct Rect {
|
|||
pub lower_right: Vec3,
|
||||
}
|
||||
|
||||
pub fn compute_viewing_rect() {
|
||||
|
||||
}
|
||||
pub fn compute_viewing_rect() {}
|
||||
|
|
Loading…
Reference in a new issue