Produce images

This commit is contained in:
Michael Zhang 2023-01-31 14:39:23 -06:00
parent 0000009017
commit 0000010056
10 changed files with 252 additions and 52 deletions

View file

@ -1 +1,2 @@
/target
*.ppm

View file

@ -14,7 +14,9 @@ version = "0.1.0"
dependencies = [
"anyhow",
"clap",
"itertools",
"num",
"ordered-float",
]
[[package]]
@ -72,6 +74,12 @@ dependencies = [
"os_str_bytes",
]
[[package]]
name = "either"
version = "1.8.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7fcaabb2fef8c910e7f4c7ce9f67a1283a1715879a7c230ca9d6d1ae31f16d91"
[[package]]
name = "errno"
version = "0.2.8"
@ -130,6 +138,15 @@ dependencies = [
"windows-sys",
]
[[package]]
name = "itertools"
version = "0.10.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473"
dependencies = [
"either",
]
[[package]]
name = "libc"
version = "0.2.139"
@ -227,6 +244,15 @@ version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6f61fba1741ea2b3d6a1e3178721804bb716a68a6aeba1149b5d52e3d464ea66"
[[package]]
name = "ordered-float"
version = "3.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d84eb1409416d254e4a9c8fa56cc24701755025b458f0fcd8e59e1f5f40c23bf"
dependencies = [
"num-traits",
]
[[package]]
name = "os_str_bytes"
version = "6.4.1"

View file

@ -8,4 +8,6 @@ edition = "2021"
[dependencies]
anyhow = "1.0.68"
clap = { version = "4.1.4", features = ["derive"] }
itertools = "0.10.5"
num = { version = "0.4.0", features = ["serde"] }
ordered-float = "3.4.0"

35
assignment-1/src/image.rs Normal file
View file

@ -0,0 +1,35 @@
use std::io::{Result, Write};
/// A 24-bit pixel represented by a red, green, and blue value.
#[derive(Clone, Copy, Default, Debug)]
pub struct Pixel(pub u8, pub u8, pub u8);
/// A representation of an image
pub struct Image {
/// Width in pixels
pub(crate) width: usize,
/// Height in pixels
pub(crate) height: usize,
/// Pixel data in row-major form.
pub(crate) data: Vec<Pixel>,
}
impl Image {
/// Write the image in PPM format to a file.
pub fn write(&self, mut w: impl Write) -> Result<()> {
// Header
let header = format!("P3 {} {} 255\n", self.width, self.height);
w.write_all(header.as_bytes())?;
// Pixel data
for pixel in self.data.iter() {
let Pixel(red, green, blue) = pixel;
let pixel = format!("{red} {green} {blue}\n");
w.write_all(pixel.as_bytes())?;
}
Ok(())
}
}

View file

@ -54,11 +54,17 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
"hfov" => scene.hfov = parts[0],
"bkgcolor" => scene.bkg_color = read_vec3()?,
"mtlcolor" => material_color = Some(read_vec3()?),
"mtlcolor" => {
let idx = scene.material_colors.len();
material_color = Some(idx);
scene.material_colors.push(read_vec3()?);
},
"sphere" => scene.objects.push(Object::Sphere(Sphere {
center: read_vec3()?,
radius: parts[3],
material: material_color.unwrap(),
})),
_ => bail!("Unknown keyword {keyword}"),
}

View file

@ -1,21 +1,30 @@
#[macro_use]
extern crate anyhow;
mod image;
mod input_file;
mod ray;
mod scene_data;
mod vec3;
mod view;
use std::fs::File;
use std::path::PathBuf;
use anyhow::Result;
use clap::Parser;
use itertools::Itertools;
use ordered_float::NotNan;
use crate::image::{Image, Pixel};
use crate::input_file::parse_input_file;
use crate::ray::Ray;
use crate::scene_data::Object;
use crate::vec3::Vec3;
use crate::view::Rect;
const ARBITRARY_D: f64 = 2.0;
/// Simple raycaster.
#[derive(Parser)]
#[clap(author, version, about, long_about = None)]
@ -26,14 +35,20 @@ struct Opt {
///
/// imsize [width] [height]
///
/// Where `imsize' is a keyword, and `width' and `height' are integer values
/// denoting the desired size of the image to be generated.
/// Where `imsize' is a keyword, and `width' and `height' are integer values denoting the desired
/// size of the image to be generated.
#[clap()]
input_path: PathBuf,
#[clap()]
output_path: Option<PathBuf>,
}
fn main() -> Result<()> {
let opt = Opt::parse();
let out_file = opt
.output_path
.unwrap_or_else(|| opt.input_path.with_extension("ppm"));
let scene = parse_input_file(&opt.input_path)?;
println!("Scene: {scene:?}");
@ -42,20 +57,88 @@ fn main() -> Result<()> {
let u = Vec3::cross(scene.view_dir, scene.up_dir).unit();
let v = Vec3::cross(u, scene.view_dir).unit();
// Compute dimensions of viewing window based on field of view
let viewing_width = {
// Divide the angle in 2 since we are trying to use trig rules so we must get it from a right
// triangle
let half_hfov = scene.hfov / 2.0;
// tan(hfov / 2) = w / 2d
let w_over_2d = half_hfov.tan();
// To find the viewing width we must multiply by 2d now
w_over_2d * 2.0 * ARBITRARY_D
};
let aspect_ratio = scene.image_width as f64 / scene.image_height as f64;
let viewing_height = viewing_width / aspect_ratio;
// Compute viewing window corners
// TODO: See slide 101
// Also need to reverse calculation for d based on hfov
let n = scene.view_dir.unit();
let d = 1.0;
#[rustfmt::skip] // Otherwise this line wraps over
let view_window = Rect {
upper_left: scene.eye_pos + n * d, // + ...
upper_right: scene.eye_pos + n * d,
lower_left: scene.eye_pos + n * d,
lower_right: scene.eye_pos + n * d,
upper_left: scene.eye_pos + n * ARBITRARY_D - u * (viewing_width / 2.0) + v * (viewing_height / 2.0),
upper_right: scene.eye_pos + n * ARBITRARY_D + u * (viewing_width / 2.0) + v * (viewing_height / 2.0),
lower_left: scene.eye_pos + n * ARBITRARY_D - u * (viewing_width / 2.0) - v * (viewing_height / 2.0),
lower_right: scene.eye_pos + n * ARBITRARY_D + u * (viewing_width / 2.0) - v * (viewing_height / 2.0),
};
// Translate image pixels to real-world 3d coords
let pixel_translation = {
let dx = view_window.upper_right - view_window.upper_left;
let pixel_base_x = dx / scene.image_width as f64;
let dy = view_window.lower_left - view_window.upper_left;
let pixel_base_y = dy / scene.image_height as f64;
move |px: usize, py: usize| {
let x_component = view_window.upper_left + pixel_base_x * px as f64;
let y_component = view_window.upper_left + pixel_base_y * py as f64;
x_component + y_component
}
};
// Loop through every single pixel of the output file
for (px, py) in (0..scene.image_width).zip(0..scene.image_height) {}
let mut pixels =
vec![Pixel::default(); scene.image_width * scene.image_width];
for (px, py) in (0..scene.image_width).cartesian_product(0..scene.image_height) {
let pixel_in_space = pixel_translation(px, py);
let ray = Ray::from_endpoints(scene.eye_pos, pixel_in_space);
let earliest_intersection = scene
.objects
.iter()
.filter_map(|object| {
let sphere = match object {
Object::Sphere(v) => v,
_ => return None, // TODO: Handle other object types for intersection as well
};
ray.intersects_at(sphere).map(|t| (t, sphere))
})
.min_by_key(|(t, _)| NotNan::new(*t).unwrap());
let pixel_color = match earliest_intersection {
Some((_, sphere)) => scene.material_colors[sphere.material],
// There was no intersection, so this should default to the background color
None => scene.bkg_color,
};
// println!("({px}, {py}): {intersection:?}\t{ray:?} {sphere:?}");
pixels[py * scene.image_height + px] = pixel_color.to_pixel();
}
let image = Image {
width: scene.image_width,
height: scene.image_height,
data: pixels,
};
{
let file = File::create(&out_file)?;
image.write(file)?;
}
Ok(())
}

View file

@ -5,52 +5,63 @@ use crate::vec3::Vec3;
///
/// That means at any time t: f64, the point represented by origin + direction * time occurs on the
/// ray.
#[derive(Debug)]
pub struct Ray {
origin: Vec3,
direction: Vec3,
}
impl Ray {
/// Construct a ray from endpoints
pub fn from_endpoints(start: Vec3, end: Vec3) -> Self {
let delta = (end - start).unit();
Ray {
origin: start,
direction: delta,
}
}
/// Evaluate the ray at a certain point in time, yielding a point
pub fn eval(&self, time: f64) -> Vec3 {
self.origin + self.direction * time
}
}
/// Given a ray and a sphere, returns the first time at which this ray intersects the sphere.
///
/// If there is no intersection point, returns None.
pub fn ray_intersection_time(ray: &Ray, sphere: &Sphere) -> Option<f64> {
let a =
ray.direction.x.powi(2) + ray.direction.y.powi(2) + ray.direction.z.powi(2);
let b = 2.0
* (ray.direction.x * (ray.origin.x - sphere.center.x)
+ ray.direction.y * (ray.origin.y - sphere.center.y)
+ ray.direction.z * (ray.origin.z - sphere.center.z));
let c = (ray.origin.x - sphere.center.x).powi(2)
+ (ray.origin.y - sphere.center.y).powi(2)
+ (ray.origin.z - sphere.center.z).powi(2)
- sphere.radius.powi(2);
let discriminant = b * b - 4.0 * a * c;
/// Given a sphere, returns the first time at which this ray intersects the sphere.
///
/// If there is no intersection point, returns None.
pub fn intersects_at(&self, sphere: &Sphere) -> Option<f64> {
let a = self.direction.x.powi(2)
+ self.direction.y.powi(2)
+ self.direction.z.powi(2);
let b = 2.0
* (self.direction.x * (self.origin.x - sphere.center.x)
+ self.direction.y * (self.origin.y - sphere.center.y)
+ self.direction.z * (self.origin.z - sphere.center.z));
let c = (self.origin.x - sphere.center.x).powi(2)
+ (self.origin.y - sphere.center.y).powi(2)
+ (self.origin.z - sphere.center.z).powi(2)
- sphere.radius.powi(2);
let discriminant = b * b - 4.0 * a * c;
match discriminant {
// Discriminant < 0, means the equation has no solutions.
d if d < 0.0 => return None,
match discriminant {
// Discriminant < 0, means the equation has no solutions.
d if d < 0.0 => return None,
// Discriminant == 0
d if d == 0.0 => {
return Some(-b / (2.0 * a));
// Discriminant == 0
d if d == 0.0 => {
return Some(-b / (2.0 * a));
}
d if d > 0.0 => {
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
return Some(solution_1.min(solution_2));
}
// Probably hit some NaN or Infinity value due to faulty inputs...
_ => unreachable!("Invalid determinant value: {discriminant}"),
}
d if d > 0.0 => {
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
return Some(solution_1.min(solution_2));
}
// Probably hit some NaN or Infinity value due to faulty inputs...
_ => unreachable!("Invalid determinant value: {discriminant}"),
}
}
@ -59,7 +70,7 @@ mod tests {
use crate::scene_data::Sphere;
use crate::vec3::Vec3;
use super::{ray_intersection_time, Ray};
use super::Ray;
#[test]
fn practice_problem_slide_154() {
@ -72,7 +83,7 @@ mod tests {
radius: 4.0,
};
let point = ray_intersection_time(&ray, &sphere).map(|t| ray.eval(t));
let point = ray.intersects_at(&sphere).map(|t| ray.eval(t));
// the intersection point in this case is (0, 0, -6)
assert_eq!(point, Some(Vec3::new(0.0, 0.0, -6.0)));
@ -90,6 +101,6 @@ mod tests {
};
// oops! In this case, the ray does not intersect the sphere.
assert_eq!(ray_intersection_time(&ray, &sphere), None);
assert_eq!(ray.intersects_at(&sphere), None);
}
}

View file

@ -4,6 +4,9 @@ use crate::vec3::Vec3;
pub struct Sphere {
pub center: Vec3,
pub radius: f64,
/// Index into the scene's material color list
pub material: usize,
}
#[derive(Debug)]
@ -32,8 +35,6 @@ pub struct Scene {
/// Background color
pub bkg_color: Vec3,
/// Material color
pub mtl_color: Vec3,
pub material_colors: Vec<Vec3>,
pub objects: Vec<Object>,
}

View file

@ -1,7 +1,9 @@
use std::ops::{Add, Mul};
use std::ops::{Add, Div, Mul, Sub};
use num::Float;
use crate::image::Pixel;
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq)]
pub struct Vec3<T = f64> {
pub x: T,
@ -37,6 +39,16 @@ impl<T: Float> Vec3<T> {
}
}
impl Vec3<f64> {
/// Convert into an RGB color
pub fn to_pixel(&self) -> Pixel {
let r = (self.x * 256.0) as u8;
let g = (self.y * 256.0) as u8;
let b = (self.z * 256.0) as u8;
Pixel(r, g, b)
}
}
/// Vector addition
impl<T> Add<Vec3<T>> for Vec3<T>
where
@ -49,6 +61,18 @@ where
}
}
/// Vector subtraction
impl<T> Sub<Vec3<T>> for Vec3<T>
where
T: Sub<T>,
{
type Output = Vec3<T::Output>;
fn sub(self, rhs: Vec3<T>) -> Self::Output {
Vec3::new(self.x - rhs.x, self.y - rhs.y, self.z - rhs.z)
}
}
/// Scalar multiplication
impl<T, U> Mul<U> for Vec3<T>
where
@ -62,6 +86,19 @@ where
}
}
/// Scalar division
impl<T, U> Div<U> for Vec3<T>
where
T: Div<U, Output = U>,
U: Copy,
{
type Output = Vec3<U>;
fn div(self, rhs: U) -> Self::Output {
Vec3::new(self.x / rhs, self.y / rhs, self.z / rhs)
}
}
#[cfg(test)]
mod tests {
use super::Vec3;

View file

@ -8,6 +8,4 @@ pub struct Rect {
pub lower_right: Vec3,
}
pub fn compute_viewing_rect() {
}
pub fn compute_viewing_rect() {}