Refactored large part of the code to make it more extensible
This commit is contained in:
parent
0000022072
commit
00000230ee
8 changed files with 283 additions and 244 deletions
|
@ -5,7 +5,11 @@ use nalgebra::Vector3;
|
||||||
|
|
||||||
use crate::{
|
use crate::{
|
||||||
image::Color,
|
image::Color,
|
||||||
scene_data::{Cylinder, Object, ObjectKind, Scene, Sphere},
|
scene::{
|
||||||
|
cylinder::Cylinder,
|
||||||
|
data::{Object, Scene},
|
||||||
|
sphere::Sphere,
|
||||||
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
/// Parse the input file into a scene
|
/// Parse the input file into a scene
|
||||||
|
@ -50,7 +54,11 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
|
||||||
if parts.len() < 3 {
|
if parts.len() < 3 {
|
||||||
bail!("Vec3 requires 3 components.");
|
bail!("Vec3 requires 3 components.");
|
||||||
}
|
}
|
||||||
Ok(Vector3::new(parts[start], parts[start + 1], parts[start + 2]))
|
Ok(Vector3::new(
|
||||||
|
parts[start],
|
||||||
|
parts[start + 1],
|
||||||
|
parts[start + 2],
|
||||||
|
))
|
||||||
};
|
};
|
||||||
|
|
||||||
let read_color = || {
|
let read_color = || {
|
||||||
|
@ -75,7 +83,7 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
|
||||||
}
|
}
|
||||||
|
|
||||||
"sphere" => scene.objects.push(Object {
|
"sphere" => scene.objects.push(Object {
|
||||||
kind: ObjectKind::Sphere(Sphere {
|
kind: Box::new(Sphere {
|
||||||
center: read_vec3(0)?,
|
center: read_vec3(0)?,
|
||||||
radius: parts[3],
|
radius: parts[3],
|
||||||
}),
|
}),
|
||||||
|
@ -86,7 +94,7 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
|
||||||
}),
|
}),
|
||||||
|
|
||||||
"cylinder" => scene.objects.push(Object {
|
"cylinder" => scene.objects.push(Object {
|
||||||
kind: ObjectKind::Cylinder(Cylinder {
|
kind: Box::new(Cylinder {
|
||||||
center: read_vec3(0)?,
|
center: read_vec3(0)?,
|
||||||
direction: read_vec3(3)?,
|
direction: read_vec3(3)?,
|
||||||
radius: parts[6],
|
radius: parts[6],
|
||||||
|
|
|
@ -3,8 +3,9 @@ extern crate anyhow;
|
||||||
|
|
||||||
mod image;
|
mod image;
|
||||||
mod input_file;
|
mod input_file;
|
||||||
|
mod math;
|
||||||
mod ray;
|
mod ray;
|
||||||
mod scene_data;
|
mod scene;
|
||||||
|
|
||||||
use std::fs::File;
|
use std::fs::File;
|
||||||
use std::path::PathBuf;
|
use std::path::PathBuf;
|
||||||
|
@ -13,7 +14,6 @@ use anyhow::Result;
|
||||||
use clap::Parser;
|
use clap::Parser;
|
||||||
use ordered_float::NotNan;
|
use ordered_float::NotNan;
|
||||||
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
|
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
|
||||||
use scene_data::ObjectKind;
|
|
||||||
|
|
||||||
use crate::image::Image;
|
use crate::image::Image;
|
||||||
use crate::input_file::parse_input_file;
|
use crate::input_file::parse_input_file;
|
||||||
|
@ -107,11 +107,7 @@ fn main() -> Result<()> {
|
||||||
.objects
|
.objects
|
||||||
.iter()
|
.iter()
|
||||||
.filter_map(|object| {
|
.filter_map(|object| {
|
||||||
use ObjectKind::*;
|
let intersection_point_opt = object.kind.intersects_ray_at(&ray);
|
||||||
let intersection_point_opt = match &object.kind {
|
|
||||||
Sphere(sphere) => ray.intersects_sphere_at(&sphere),
|
|
||||||
Cylinder(cylinder) => ray.intersects_cylinder_at(&cylinder),
|
|
||||||
};
|
|
||||||
|
|
||||||
intersection_point_opt.and_then(|t| {
|
intersection_point_opt.and_then(|t| {
|
||||||
// Unfortunately, IEEE floats in Rust don't have total ordering,
|
// Unfortunately, IEEE floats in Rust don't have total ordering,
|
||||||
|
@ -128,16 +124,14 @@ fn main() -> Result<()> {
|
||||||
// Sort the list of intersection times by the lowest one.
|
// Sort the list of intersection times by the lowest one.
|
||||||
.min_by_key(|(t, _)| *t);
|
.min_by_key(|(t, _)| *t);
|
||||||
|
|
||||||
let pixel_color = match earliest_intersection {
|
match earliest_intersection {
|
||||||
// Take the object's material color
|
// Take the object's material color
|
||||||
Some((_, object)) => scene.material_colors[object.material],
|
Some((_, object)) => scene.compute_pixel_color(object.material),
|
||||||
|
|
||||||
// There was no intersection, so this should default to the scene's
|
// There was no intersection, so this should default to the scene's
|
||||||
// background color
|
// background color
|
||||||
None => scene.bkg_color,
|
None => scene.bkg_color,
|
||||||
};
|
}
|
||||||
|
|
||||||
pixel_color
|
|
||||||
})
|
})
|
||||||
.collect::<Vec<_>>();
|
.collect::<Vec<_>>();
|
||||||
|
|
||||||
|
@ -149,7 +143,7 @@ fn main() -> Result<()> {
|
||||||
};
|
};
|
||||||
|
|
||||||
{
|
{
|
||||||
let file = File::create(&out_file)?;
|
let file = File::create(out_file)?;
|
||||||
image.write(file)?;
|
image.write(file)?;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
21
assignment-1/src/math.rs
Normal file
21
assignment-1/src/math.rs
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
use nalgebra::{Matrix3, Vector3};
|
||||||
|
|
||||||
|
/// Calculate the rotation matrix between the 2 given vectors
|
||||||
|
/// Based on the method here: https://math.stackexchange.com/a/897677
|
||||||
|
pub fn compute_rotation_matrix(
|
||||||
|
a: Vector3<f64>,
|
||||||
|
b: Vector3<f64>,
|
||||||
|
) -> Matrix3<f64> {
|
||||||
|
let cos_t = a.dot(&b);
|
||||||
|
let sin_t = a.cross(&b).norm();
|
||||||
|
let g = Matrix3::new(cos_t, -sin_t, 0.0, sin_t, cos_t, 0.0, 0.0, 0.0, 1.0);
|
||||||
|
|
||||||
|
// New basis vectors
|
||||||
|
let u = a;
|
||||||
|
let v = (b - a.dot(&b) * a).normalize();
|
||||||
|
let w = b.cross(&a);
|
||||||
|
// Not sure if this is required to be invertible?
|
||||||
|
let f = Matrix3::from_columns(&[u, v, w]).try_inverse().unwrap();
|
||||||
|
|
||||||
|
f.try_inverse().unwrap() * g * f
|
||||||
|
}
|
|
@ -1,7 +1,4 @@
|
||||||
use nalgebra::{Matrix3, Vector3};
|
use nalgebra::Vector3;
|
||||||
use ordered_float::NotNan;
|
|
||||||
|
|
||||||
use crate::scene_data::{Cylinder, Sphere};
|
|
||||||
|
|
||||||
/// A normalized parametric Ray of the form (origin + direction * time)
|
/// A normalized parametric Ray of the form (origin + direction * time)
|
||||||
///
|
///
|
||||||
|
@ -9,8 +6,8 @@ use crate::scene_data::{Cylinder, Sphere};
|
||||||
/// time occurs on the ray.
|
/// time occurs on the ray.
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
pub struct Ray {
|
pub struct Ray {
|
||||||
origin: Vector3<f64>,
|
pub origin: Vector3<f64>,
|
||||||
direction: Vector3<f64>,
|
pub direction: Vector3<f64>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Ray {
|
impl Ray {
|
||||||
|
@ -27,206 +24,4 @@ impl Ray {
|
||||||
pub fn eval(&self, time: f64) -> Vector3<f64> {
|
pub fn eval(&self, time: f64) -> Vector3<f64> {
|
||||||
self.origin + self.direction * time
|
self.origin + self.direction * time
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Given a sphere, returns the first time at which this ray intersects the
|
|
||||||
/// sphere.
|
|
||||||
///
|
|
||||||
/// If there is no intersection point, returns None.
|
|
||||||
pub fn intersects_sphere_at(&self, sphere: &Sphere) -> Option<f64> {
|
|
||||||
let a = self.direction.x.powi(2)
|
|
||||||
+ self.direction.y.powi(2)
|
|
||||||
+ self.direction.z.powi(2);
|
|
||||||
let b = 2.0
|
|
||||||
* (self.direction.x * (self.origin.x - sphere.center.x)
|
|
||||||
+ self.direction.y * (self.origin.y - sphere.center.y)
|
|
||||||
+ self.direction.z * (self.origin.z - sphere.center.z));
|
|
||||||
let c = (self.origin.x - sphere.center.x).powi(2)
|
|
||||||
+ (self.origin.y - sphere.center.y).powi(2)
|
|
||||||
+ (self.origin.z - sphere.center.z).powi(2)
|
|
||||||
- sphere.radius.powi(2);
|
|
||||||
let discriminant = b * b - 4.0 * a * c;
|
|
||||||
|
|
||||||
match discriminant {
|
|
||||||
// Discriminant < 0, means the equation has no solutions.
|
|
||||||
d if d < 0.0 => return None,
|
|
||||||
|
|
||||||
// Discriminant == 0
|
|
||||||
d if d == 0.0 => {
|
|
||||||
return Some(-b / (2.0 * a));
|
|
||||||
}
|
|
||||||
|
|
||||||
d if d > 0.0 => {
|
|
||||||
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
|
|
||||||
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
|
|
||||||
|
|
||||||
return Some(solution_1.min(solution_2));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
|
||||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Given a cylinder, returns the first time at which this ray intersects the
|
|
||||||
/// cylinder.
|
|
||||||
///
|
|
||||||
/// If there is no intersection point, returns None.
|
|
||||||
pub fn intersects_cylinder_at(&self, cylinder: &Cylinder) -> Option<f64> {
|
|
||||||
// Determine rotation matrix for turning the cylinder upright along the
|
|
||||||
// Z-axis
|
|
||||||
let target_direction = Vector3::new(0.0, 0.0, 1.0);
|
|
||||||
let rotation_matrix =
|
|
||||||
compute_rotation_matrix(cylinder.direction, target_direction);
|
|
||||||
|
|
||||||
// Transform all parameters according to this rotation matrix
|
|
||||||
let rotated_cylinder_center = rotation_matrix * cylinder.center;
|
|
||||||
let rotated_ray_origin = rotation_matrix * self.origin;
|
|
||||||
let rotated_ray_direction = rotation_matrix * self.direction;
|
|
||||||
|
|
||||||
// Now that we know the cylinder is upright, we can start checking against
|
|
||||||
// the formula:
|
|
||||||
//
|
|
||||||
// (ox + t*rx - cx)^2 + (oy + t*ry - cy)^2 = r^2
|
|
||||||
//
|
|
||||||
// where o{xy} is the ray origin, r{xy} is the ray direction, and c{xy} is
|
|
||||||
// the cylinder center. The z will be taken care of after the fact. To
|
|
||||||
// solve, we must put it into the form At^2 + Bt + c = 0. The variables
|
|
||||||
// are:
|
|
||||||
//
|
|
||||||
// A: rx^2 + ry^2
|
|
||||||
// B: 2(rx(ox - cx) + ry(oy - cy))
|
|
||||||
// C: (cx - ox)^2 + (cy - oy)^2 - r^2
|
|
||||||
let (a, b, c) = {
|
|
||||||
let o = rotated_ray_origin;
|
|
||||||
let r = rotated_ray_direction;
|
|
||||||
let c = rotated_cylinder_center;
|
|
||||||
|
|
||||||
(
|
|
||||||
r.x.powi(2) + r.y.powi(2),
|
|
||||||
2.0 * (r.x * (o.x - c.x) + r.y * (o.y - c.y)),
|
|
||||||
(c.x - o.x).powi(2) + (c.y - o.y).powi(2) - cylinder.radius.powi(2),
|
|
||||||
)
|
|
||||||
};
|
|
||||||
|
|
||||||
let discriminant = b * b - 4.0 * a * c;
|
|
||||||
|
|
||||||
let mut solutions = match discriminant {
|
|
||||||
// Discriminant < 0, means the equation has no solutions.
|
|
||||||
d if d < 0.0 => vec![],
|
|
||||||
|
|
||||||
// Discriminant == 0
|
|
||||||
d if d == 0.0 => vec![-b / 2.0 * a],
|
|
||||||
|
|
||||||
// Discriminant > 0, 2 solutions available.
|
|
||||||
d if d > 0.0 => {
|
|
||||||
vec![
|
|
||||||
(-b + discriminant.sqrt()) / (2.0 * a),
|
|
||||||
(-b - discriminant.sqrt()) / (2.0 * a),
|
|
||||||
]
|
|
||||||
}
|
|
||||||
|
|
||||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
|
||||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
|
||||||
};
|
|
||||||
|
|
||||||
// We also need to add solutions for the two ends of the cylinder, which
|
|
||||||
// uses a similar method except backwards: check intersection points
|
|
||||||
// with the correct z-plane and then see if the points are within the
|
|
||||||
// circle.
|
|
||||||
//
|
|
||||||
// Luckily, this means we only need to care about one dimension at first,
|
|
||||||
// and don't need to perform the quadratic equation method above.
|
|
||||||
//
|
|
||||||
// oz + t * rz = cz +- (len / 2)
|
|
||||||
// t = (oz + cz +- (len / 2)) / rz
|
|
||||||
let possible_z_intersections = {
|
|
||||||
let o = rotated_ray_origin;
|
|
||||||
let r = rotated_ray_direction;
|
|
||||||
let c = rotated_cylinder_center;
|
|
||||||
|
|
||||||
vec![
|
|
||||||
(o.z + c.z + cylinder.length / 2.0) / r.z,
|
|
||||||
(o.z + c.z - cylinder.length / 2.0) / r.z,
|
|
||||||
]
|
|
||||||
};
|
|
||||||
// Filter out all the solutions where the z does not lie in the circle
|
|
||||||
solutions.extend(possible_z_intersections.into_iter().filter(|t| {
|
|
||||||
let ray_point = self.origin + self.direction * (*t);
|
|
||||||
ray_point.x.powi(2) + ray_point.y.powi(2) <= cylinder.radius.powi(2)
|
|
||||||
}));
|
|
||||||
|
|
||||||
// Filter out solutions that don't have a valid Z position.
|
|
||||||
let solutions = solutions
|
|
||||||
.into_iter()
|
|
||||||
.filter(|t| {
|
|
||||||
let ray_point = self.origin + self.direction * (*t);
|
|
||||||
|
|
||||||
let rotated_ray_point = rotation_matrix * ray_point;
|
|
||||||
let z = rotated_ray_point.z - rotated_cylinder_center.z;
|
|
||||||
|
|
||||||
// Check to see if z is between -len/2 and len/2
|
|
||||||
z.abs() < cylinder.length / 2.0
|
|
||||||
})
|
|
||||||
.filter_map(|t| NotNan::new(t).ok());
|
|
||||||
|
|
||||||
// Return the minimum solution
|
|
||||||
solutions.min().map(|t| t.into_inner())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Calculate the rotation matrix between the 2 given vectors
|
|
||||||
/// Based on the method here: https://math.stackexchange.com/a/897677
|
|
||||||
fn compute_rotation_matrix(a: Vector3<f64>, b: Vector3<f64>) -> Matrix3<f64> {
|
|
||||||
let cos_t = a.dot(&b);
|
|
||||||
let sin_t = a.cross(&b).norm();
|
|
||||||
let G = Matrix3::new(cos_t, -sin_t, 0.0, sin_t, cos_t, 0.0, 0.0, 0.0, 1.0);
|
|
||||||
|
|
||||||
// Basis
|
|
||||||
let u = a;
|
|
||||||
let v = (b - a.dot(&b) * a).normalize();
|
|
||||||
let w = b.cross(&a);
|
|
||||||
let F = Matrix3::from_columns(&[u, v, w]).try_inverse().unwrap();
|
|
||||||
|
|
||||||
F.try_inverse().unwrap() * G * F
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(test)]
|
|
||||||
mod tests {
|
|
||||||
use nalgebra::Vector3;
|
|
||||||
|
|
||||||
use crate::scene_data::Sphere;
|
|
||||||
|
|
||||||
use super::Ray;
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn practice_problem_slide_154() {
|
|
||||||
let ray = Ray {
|
|
||||||
origin: Vector3::new(0.0, 0.0, 0.0),
|
|
||||||
direction: Vector3::new(0.0, 0.0, -1.0),
|
|
||||||
};
|
|
||||||
let sphere = Sphere {
|
|
||||||
center: Vector3::new(0.0, 0.0, -10.0),
|
|
||||||
radius: 4.0,
|
|
||||||
};
|
|
||||||
|
|
||||||
let point = ray.intersects_sphere_at(&sphere).map(|t| ray.eval(t));
|
|
||||||
|
|
||||||
// the intersection point in this case is (0, 0, -6)
|
|
||||||
assert_eq!(point, Some(Vector3::new(0.0, 0.0, -6.0)));
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
|
||||||
fn practice_problem_slide_158() {
|
|
||||||
let ray = Ray {
|
|
||||||
origin: Vector3::new(0.0, 0.0, 0.0),
|
|
||||||
direction: Vector3::new(0.0, 0.5, -1.0),
|
|
||||||
};
|
|
||||||
let sphere = Sphere {
|
|
||||||
center: Vector3::new(0.0, 0.0, -10.0),
|
|
||||||
radius: 4.0,
|
|
||||||
};
|
|
||||||
|
|
||||||
// oops! In this case, the ray does not intersect the sphere.
|
|
||||||
assert_eq!(ray.intersects_sphere_at(&sphere), None);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
121
assignment-1/src/scene/cylinder.rs
Normal file
121
assignment-1/src/scene/cylinder.rs
Normal file
|
@ -0,0 +1,121 @@
|
||||||
|
use nalgebra::Vector3;
|
||||||
|
use ordered_float::NotNan;
|
||||||
|
|
||||||
|
use crate::{math::compute_rotation_matrix, ray::Ray};
|
||||||
|
|
||||||
|
use super::data::ObjectKind;
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct Cylinder {
|
||||||
|
pub center: Vector3<f64>,
|
||||||
|
pub direction: Vector3<f64>,
|
||||||
|
pub radius: f64,
|
||||||
|
pub length: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ObjectKind for Cylinder {
|
||||||
|
/// Given a cylinder, returns the first time at which this ray intersects the
|
||||||
|
/// cylinder.
|
||||||
|
///
|
||||||
|
/// If there is no intersection point, returns None.
|
||||||
|
fn intersects_ray_at(&self, ray: &Ray) -> Option<f64> {
|
||||||
|
// Determine rotation matrix for turning the cylinder upright along the
|
||||||
|
// Z-axis
|
||||||
|
let target_direction = Vector3::new(0.0, 0.0, 1.0);
|
||||||
|
let rotation_matrix =
|
||||||
|
compute_rotation_matrix(self.direction, target_direction);
|
||||||
|
|
||||||
|
// Transform all parameters according to this rotation matrix
|
||||||
|
let rotated_cylinder_center = rotation_matrix * self.center;
|
||||||
|
let rotated_ray_origin = rotation_matrix * ray.origin;
|
||||||
|
let rotated_ray_direction = rotation_matrix * ray.direction;
|
||||||
|
|
||||||
|
// Now that we know the cylinder is upright, we can start checking against
|
||||||
|
// the formula:
|
||||||
|
//
|
||||||
|
// (ox + t*rx - cx)^2 + (oy + t*ry - cy)^2 = r^2
|
||||||
|
//
|
||||||
|
// where o{xy} is the ray origin, r{xy} is the ray direction, and c{xy} is
|
||||||
|
// the cylinder center. The z will be taken care of after the fact. To
|
||||||
|
// solve, we must put it into the form At^2 + Bt + c = 0. The variables
|
||||||
|
// are:
|
||||||
|
//
|
||||||
|
// A: rx^2 + ry^2
|
||||||
|
// B: 2(rx(ox - cx) + ry(oy - cy))
|
||||||
|
// C: (cx - ox)^2 + (cy - oy)^2 - r^2
|
||||||
|
let (a, b, c) = {
|
||||||
|
let o = rotated_ray_origin;
|
||||||
|
let r = rotated_ray_direction;
|
||||||
|
let c = rotated_cylinder_center;
|
||||||
|
|
||||||
|
(
|
||||||
|
r.x.powi(2) + r.y.powi(2),
|
||||||
|
2.0 * (r.x * (o.x - c.x) + r.y * (o.y - c.y)),
|
||||||
|
(c.x - o.x).powi(2) + (c.y - o.y).powi(2) - self.radius.powi(2),
|
||||||
|
)
|
||||||
|
};
|
||||||
|
|
||||||
|
let discriminant = b * b - 4.0 * a * c;
|
||||||
|
|
||||||
|
let mut solutions = match discriminant {
|
||||||
|
// Discriminant < 0, means the equation has no solutions.
|
||||||
|
d if d < 0.0 => vec![],
|
||||||
|
|
||||||
|
// Discriminant == 0
|
||||||
|
d if d == 0.0 => vec![-b / 2.0 * a],
|
||||||
|
|
||||||
|
// Discriminant > 0, 2 solutions available.
|
||||||
|
d if d > 0.0 => {
|
||||||
|
vec![
|
||||||
|
(-b + discriminant.sqrt()) / (2.0 * a),
|
||||||
|
(-b - discriminant.sqrt()) / (2.0 * a),
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||||
|
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||||
|
};
|
||||||
|
|
||||||
|
// We also need to add solutions for the two ends of the cylinder, which
|
||||||
|
// uses a similar method except backwards: check intersection points
|
||||||
|
// with the correct z-plane and then see if the points are within the
|
||||||
|
// circle.
|
||||||
|
//
|
||||||
|
// Luckily, this means we only need to care about one dimension at first,
|
||||||
|
// and don't need to perform the quadratic equation method above.
|
||||||
|
//
|
||||||
|
// oz + t * rz = cz +- (len / 2)
|
||||||
|
// t = (oz + cz +- (len / 2)) / rz
|
||||||
|
let possible_z_intersections = {
|
||||||
|
let o = rotated_ray_origin;
|
||||||
|
let r = rotated_ray_direction;
|
||||||
|
let c = rotated_cylinder_center;
|
||||||
|
|
||||||
|
vec![
|
||||||
|
(o.z + c.z + self.length / 2.0) / r.z,
|
||||||
|
(o.z + c.z - self.length / 2.0) / r.z,
|
||||||
|
]
|
||||||
|
};
|
||||||
|
// Filter out all the solutions where the z does not lie in the circle
|
||||||
|
solutions.extend(possible_z_intersections.into_iter().filter(|t| {
|
||||||
|
let ray_point = ray.eval(*t);
|
||||||
|
ray_point.x.powi(2) + ray_point.y.powi(2) <= self.radius.powi(2)
|
||||||
|
}));
|
||||||
|
|
||||||
|
// Filter out solutions that don't have a valid Z position.
|
||||||
|
let solutions = solutions
|
||||||
|
.into_iter()
|
||||||
|
.filter(|t| {
|
||||||
|
let ray_point = ray.eval(*t);
|
||||||
|
let rotated_ray_point = rotation_matrix * ray_point;
|
||||||
|
let z = rotated_ray_point.z - rotated_cylinder_center.z;
|
||||||
|
|
||||||
|
// Check to see if z is between -len/2 and len/2
|
||||||
|
z.abs() < self.length / 2.0
|
||||||
|
})
|
||||||
|
.filter_map(|t| NotNan::new(t).ok());
|
||||||
|
|
||||||
|
// Return the minimum solution
|
||||||
|
solutions.min().map(|t| t.into_inner())
|
||||||
|
}
|
||||||
|
}
|
|
@ -1,35 +1,27 @@
|
||||||
|
use std::fmt::Debug;
|
||||||
|
|
||||||
use nalgebra::Vector3;
|
use nalgebra::Vector3;
|
||||||
|
|
||||||
use crate::image::Color;
|
use crate::image::Color;
|
||||||
|
use crate::ray::Ray;
|
||||||
|
|
||||||
#[derive(Debug)]
|
pub trait ObjectKind: Debug + Send + Sync {
|
||||||
pub struct Sphere {
|
/// Determine where the ray intersects this object, returning the earliest
|
||||||
pub center: Vector3<f64>,
|
/// time this happens. Returns None if no intersection occurs.
|
||||||
pub radius: f64,
|
///
|
||||||
}
|
/// Also known as Trace_Ray in the slides, except not the part where it calls
|
||||||
|
/// Shade_Ray.
|
||||||
#[derive(Debug)]
|
fn intersects_ray_at(&self, ray: &Ray) -> Option<f64>;
|
||||||
pub struct Cylinder {
|
|
||||||
pub center: Vector3<f64>,
|
|
||||||
pub direction: Vector3<f64>,
|
|
||||||
pub radius: f64,
|
|
||||||
pub length: f64,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
pub struct Object {
|
pub struct Object {
|
||||||
pub kind: ObjectKind,
|
pub kind: Box<dyn ObjectKind>,
|
||||||
|
|
||||||
/// Index into the scene's material color list
|
/// Index into the scene's material color list
|
||||||
pub material: usize,
|
pub material: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
pub enum ObjectKind {
|
|
||||||
Sphere(Sphere),
|
|
||||||
Cylinder(Cylinder),
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
pub struct Rect {
|
pub struct Rect {
|
||||||
pub upper_left: Vector3<f64>,
|
pub upper_left: Vector3<f64>,
|
||||||
|
@ -59,6 +51,19 @@ pub struct Scene {
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Scene {
|
impl Scene {
|
||||||
|
/// Determine the color that should be used to fill this pixel
|
||||||
|
///
|
||||||
|
/// Also known as Shade_Ray in the slides.
|
||||||
|
pub fn compute_pixel_color(&self, material_idx: usize) -> Color {
|
||||||
|
// TODO: Does it make sense to make this function fallible from an API
|
||||||
|
// design standpoint?
|
||||||
|
self
|
||||||
|
.material_colors
|
||||||
|
.get(material_idx)
|
||||||
|
.cloned()
|
||||||
|
.unwrap_or(self.bkg_color)
|
||||||
|
}
|
||||||
|
|
||||||
/// Determine the boundaries of the viewing window in world coordinates
|
/// Determine the boundaries of the viewing window in world coordinates
|
||||||
pub fn compute_viewing_window(&self, distance: f64) -> Rect {
|
pub fn compute_viewing_window(&self, distance: f64) -> Rect {
|
||||||
// Compute viewing directions
|
// Compute viewing directions
|
3
assignment-1/src/scene/mod.rs
Normal file
3
assignment-1/src/scene/mod.rs
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
pub mod data;
|
||||||
|
pub mod sphere;
|
||||||
|
pub mod cylinder;
|
92
assignment-1/src/scene/sphere.rs
Normal file
92
assignment-1/src/scene/sphere.rs
Normal file
|
@ -0,0 +1,92 @@
|
||||||
|
use nalgebra::Vector3;
|
||||||
|
|
||||||
|
use crate::ray::Ray;
|
||||||
|
|
||||||
|
use super::data::ObjectKind;
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct Sphere {
|
||||||
|
pub center: Vector3<f64>,
|
||||||
|
pub radius: f64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl ObjectKind for Sphere {
|
||||||
|
/// Given a sphere, returns the first time at which this ray intersects the
|
||||||
|
/// sphere.
|
||||||
|
///
|
||||||
|
/// If there is no intersection point, returns None.
|
||||||
|
fn intersects_ray_at(&self, ray: &Ray) -> Option<f64> {
|
||||||
|
let a = ray.direction.x.powi(2)
|
||||||
|
+ ray.direction.y.powi(2)
|
||||||
|
+ ray.direction.z.powi(2);
|
||||||
|
let b = 2.0
|
||||||
|
* (ray.direction.x * (ray.origin.x - self.center.x)
|
||||||
|
+ ray.direction.y * (ray.origin.y - self.center.y)
|
||||||
|
+ ray.direction.z * (ray.origin.z - self.center.z));
|
||||||
|
let c = (ray.origin.x - self.center.x).powi(2)
|
||||||
|
+ (ray.origin.y - self.center.y).powi(2)
|
||||||
|
+ (ray.origin.z - self.center.z).powi(2)
|
||||||
|
- self.radius.powi(2);
|
||||||
|
let discriminant = b * b - 4.0 * a * c;
|
||||||
|
|
||||||
|
match discriminant {
|
||||||
|
// Discriminant < 0, means the equation has no solutions.
|
||||||
|
d if d < 0.0 => None,
|
||||||
|
|
||||||
|
// Discriminant == 0
|
||||||
|
d if d == 0.0 => Some(-b / (2.0 * a)),
|
||||||
|
|
||||||
|
d if d > 0.0 => {
|
||||||
|
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
|
||||||
|
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
|
||||||
|
|
||||||
|
Some(solution_1.min(solution_2))
|
||||||
|
}
|
||||||
|
|
||||||
|
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||||
|
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use nalgebra::Vector3;
|
||||||
|
|
||||||
|
use crate::ray::Ray;
|
||||||
|
use crate::scene::data::ObjectKind;
|
||||||
|
|
||||||
|
use super::Sphere;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn practice_problem_slide_154() {
|
||||||
|
let ray = Ray {
|
||||||
|
origin: Vector3::new(0.0, 0.0, 0.0),
|
||||||
|
direction: Vector3::new(0.0, 0.0, -1.0),
|
||||||
|
};
|
||||||
|
let sphere = Sphere {
|
||||||
|
center: Vector3::new(0.0, 0.0, -10.0),
|
||||||
|
radius: 4.0,
|
||||||
|
};
|
||||||
|
|
||||||
|
let point = sphere.intersects_ray_at(&ray).map(|t| ray.eval(t));
|
||||||
|
|
||||||
|
// the intersection point in this case is (0, 0, -6)
|
||||||
|
assert_eq!(point, Some(Vector3::new(0.0, 0.0, -6.0)));
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn practice_problem_slide_158() {
|
||||||
|
let ray = Ray {
|
||||||
|
origin: Vector3::new(0.0, 0.0, 0.0),
|
||||||
|
direction: Vector3::new(0.0, 0.5, -1.0),
|
||||||
|
};
|
||||||
|
let sphere = Sphere {
|
||||||
|
center: Vector3::new(0.0, 0.0, -10.0),
|
||||||
|
radius: 4.0,
|
||||||
|
};
|
||||||
|
|
||||||
|
// oops! In this case, the ray does not intersect the sphere.
|
||||||
|
assert_eq!(sphere.intersects_ray_at(&ray), None);
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in a new issue