Refactored large part of the code to make it more extensible
This commit is contained in:
parent
adf8fa87fa
commit
a7b9ec249a
8 changed files with 283 additions and 244 deletions
|
@ -5,7 +5,11 @@ use nalgebra::Vector3;
|
|||
|
||||
use crate::{
|
||||
image::Color,
|
||||
scene_data::{Cylinder, Object, ObjectKind, Scene, Sphere},
|
||||
scene::{
|
||||
cylinder::Cylinder,
|
||||
data::{Object, Scene},
|
||||
sphere::Sphere,
|
||||
},
|
||||
};
|
||||
|
||||
/// Parse the input file into a scene
|
||||
|
@ -50,7 +54,11 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
|
|||
if parts.len() < 3 {
|
||||
bail!("Vec3 requires 3 components.");
|
||||
}
|
||||
Ok(Vector3::new(parts[start], parts[start + 1], parts[start + 2]))
|
||||
Ok(Vector3::new(
|
||||
parts[start],
|
||||
parts[start + 1],
|
||||
parts[start + 2],
|
||||
))
|
||||
};
|
||||
|
||||
let read_color = || {
|
||||
|
@ -75,7 +83,7 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
|
|||
}
|
||||
|
||||
"sphere" => scene.objects.push(Object {
|
||||
kind: ObjectKind::Sphere(Sphere {
|
||||
kind: Box::new(Sphere {
|
||||
center: read_vec3(0)?,
|
||||
radius: parts[3],
|
||||
}),
|
||||
|
@ -86,7 +94,7 @@ pub fn parse_input_file(path: impl AsRef<Path>) -> Result<Scene> {
|
|||
}),
|
||||
|
||||
"cylinder" => scene.objects.push(Object {
|
||||
kind: ObjectKind::Cylinder(Cylinder {
|
||||
kind: Box::new(Cylinder {
|
||||
center: read_vec3(0)?,
|
||||
direction: read_vec3(3)?,
|
||||
radius: parts[6],
|
||||
|
|
|
@ -3,8 +3,9 @@ extern crate anyhow;
|
|||
|
||||
mod image;
|
||||
mod input_file;
|
||||
mod math;
|
||||
mod ray;
|
||||
mod scene_data;
|
||||
mod scene;
|
||||
|
||||
use std::fs::File;
|
||||
use std::path::PathBuf;
|
||||
|
@ -13,7 +14,6 @@ use anyhow::Result;
|
|||
use clap::Parser;
|
||||
use ordered_float::NotNan;
|
||||
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
|
||||
use scene_data::ObjectKind;
|
||||
|
||||
use crate::image::Image;
|
||||
use crate::input_file::parse_input_file;
|
||||
|
@ -107,11 +107,7 @@ fn main() -> Result<()> {
|
|||
.objects
|
||||
.iter()
|
||||
.filter_map(|object| {
|
||||
use ObjectKind::*;
|
||||
let intersection_point_opt = match &object.kind {
|
||||
Sphere(sphere) => ray.intersects_sphere_at(&sphere),
|
||||
Cylinder(cylinder) => ray.intersects_cylinder_at(&cylinder),
|
||||
};
|
||||
let intersection_point_opt = object.kind.intersects_ray_at(&ray);
|
||||
|
||||
intersection_point_opt.and_then(|t| {
|
||||
// Unfortunately, IEEE floats in Rust don't have total ordering,
|
||||
|
@ -128,16 +124,14 @@ fn main() -> Result<()> {
|
|||
// Sort the list of intersection times by the lowest one.
|
||||
.min_by_key(|(t, _)| *t);
|
||||
|
||||
let pixel_color = match earliest_intersection {
|
||||
match earliest_intersection {
|
||||
// Take the object's material color
|
||||
Some((_, object)) => scene.material_colors[object.material],
|
||||
Some((_, object)) => scene.compute_pixel_color(object.material),
|
||||
|
||||
// There was no intersection, so this should default to the scene's
|
||||
// background color
|
||||
None => scene.bkg_color,
|
||||
};
|
||||
|
||||
pixel_color
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
|
@ -149,7 +143,7 @@ fn main() -> Result<()> {
|
|||
};
|
||||
|
||||
{
|
||||
let file = File::create(&out_file)?;
|
||||
let file = File::create(out_file)?;
|
||||
image.write(file)?;
|
||||
}
|
||||
|
||||
|
|
21
assignment-1/src/math.rs
Normal file
21
assignment-1/src/math.rs
Normal file
|
@ -0,0 +1,21 @@
|
|||
use nalgebra::{Matrix3, Vector3};
|
||||
|
||||
/// Calculate the rotation matrix between the 2 given vectors
|
||||
/// Based on the method here: https://math.stackexchange.com/a/897677
|
||||
pub fn compute_rotation_matrix(
|
||||
a: Vector3<f64>,
|
||||
b: Vector3<f64>,
|
||||
) -> Matrix3<f64> {
|
||||
let cos_t = a.dot(&b);
|
||||
let sin_t = a.cross(&b).norm();
|
||||
let g = Matrix3::new(cos_t, -sin_t, 0.0, sin_t, cos_t, 0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
// New basis vectors
|
||||
let u = a;
|
||||
let v = (b - a.dot(&b) * a).normalize();
|
||||
let w = b.cross(&a);
|
||||
// Not sure if this is required to be invertible?
|
||||
let f = Matrix3::from_columns(&[u, v, w]).try_inverse().unwrap();
|
||||
|
||||
f.try_inverse().unwrap() * g * f
|
||||
}
|
|
@ -1,7 +1,4 @@
|
|||
use nalgebra::{Matrix3, Vector3};
|
||||
use ordered_float::NotNan;
|
||||
|
||||
use crate::scene_data::{Cylinder, Sphere};
|
||||
use nalgebra::Vector3;
|
||||
|
||||
/// A normalized parametric Ray of the form (origin + direction * time)
|
||||
///
|
||||
|
@ -9,8 +6,8 @@ use crate::scene_data::{Cylinder, Sphere};
|
|||
/// time occurs on the ray.
|
||||
#[derive(Debug)]
|
||||
pub struct Ray {
|
||||
origin: Vector3<f64>,
|
||||
direction: Vector3<f64>,
|
||||
pub origin: Vector3<f64>,
|
||||
pub direction: Vector3<f64>,
|
||||
}
|
||||
|
||||
impl Ray {
|
||||
|
@ -27,206 +24,4 @@ impl Ray {
|
|||
pub fn eval(&self, time: f64) -> Vector3<f64> {
|
||||
self.origin + self.direction * time
|
||||
}
|
||||
|
||||
/// Given a sphere, returns the first time at which this ray intersects the
|
||||
/// sphere.
|
||||
///
|
||||
/// If there is no intersection point, returns None.
|
||||
pub fn intersects_sphere_at(&self, sphere: &Sphere) -> Option<f64> {
|
||||
let a = self.direction.x.powi(2)
|
||||
+ self.direction.y.powi(2)
|
||||
+ self.direction.z.powi(2);
|
||||
let b = 2.0
|
||||
* (self.direction.x * (self.origin.x - sphere.center.x)
|
||||
+ self.direction.y * (self.origin.y - sphere.center.y)
|
||||
+ self.direction.z * (self.origin.z - sphere.center.z));
|
||||
let c = (self.origin.x - sphere.center.x).powi(2)
|
||||
+ (self.origin.y - sphere.center.y).powi(2)
|
||||
+ (self.origin.z - sphere.center.z).powi(2)
|
||||
- sphere.radius.powi(2);
|
||||
let discriminant = b * b - 4.0 * a * c;
|
||||
|
||||
match discriminant {
|
||||
// Discriminant < 0, means the equation has no solutions.
|
||||
d if d < 0.0 => return None,
|
||||
|
||||
// Discriminant == 0
|
||||
d if d == 0.0 => {
|
||||
return Some(-b / (2.0 * a));
|
||||
}
|
||||
|
||||
d if d > 0.0 => {
|
||||
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
|
||||
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
|
||||
|
||||
return Some(solution_1.min(solution_2));
|
||||
}
|
||||
|
||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Given a cylinder, returns the first time at which this ray intersects the
|
||||
/// cylinder.
|
||||
///
|
||||
/// If there is no intersection point, returns None.
|
||||
pub fn intersects_cylinder_at(&self, cylinder: &Cylinder) -> Option<f64> {
|
||||
// Determine rotation matrix for turning the cylinder upright along the
|
||||
// Z-axis
|
||||
let target_direction = Vector3::new(0.0, 0.0, 1.0);
|
||||
let rotation_matrix =
|
||||
compute_rotation_matrix(cylinder.direction, target_direction);
|
||||
|
||||
// Transform all parameters according to this rotation matrix
|
||||
let rotated_cylinder_center = rotation_matrix * cylinder.center;
|
||||
let rotated_ray_origin = rotation_matrix * self.origin;
|
||||
let rotated_ray_direction = rotation_matrix * self.direction;
|
||||
|
||||
// Now that we know the cylinder is upright, we can start checking against
|
||||
// the formula:
|
||||
//
|
||||
// (ox + t*rx - cx)^2 + (oy + t*ry - cy)^2 = r^2
|
||||
//
|
||||
// where o{xy} is the ray origin, r{xy} is the ray direction, and c{xy} is
|
||||
// the cylinder center. The z will be taken care of after the fact. To
|
||||
// solve, we must put it into the form At^2 + Bt + c = 0. The variables
|
||||
// are:
|
||||
//
|
||||
// A: rx^2 + ry^2
|
||||
// B: 2(rx(ox - cx) + ry(oy - cy))
|
||||
// C: (cx - ox)^2 + (cy - oy)^2 - r^2
|
||||
let (a, b, c) = {
|
||||
let o = rotated_ray_origin;
|
||||
let r = rotated_ray_direction;
|
||||
let c = rotated_cylinder_center;
|
||||
|
||||
(
|
||||
r.x.powi(2) + r.y.powi(2),
|
||||
2.0 * (r.x * (o.x - c.x) + r.y * (o.y - c.y)),
|
||||
(c.x - o.x).powi(2) + (c.y - o.y).powi(2) - cylinder.radius.powi(2),
|
||||
)
|
||||
};
|
||||
|
||||
let discriminant = b * b - 4.0 * a * c;
|
||||
|
||||
let mut solutions = match discriminant {
|
||||
// Discriminant < 0, means the equation has no solutions.
|
||||
d if d < 0.0 => vec![],
|
||||
|
||||
// Discriminant == 0
|
||||
d if d == 0.0 => vec![-b / 2.0 * a],
|
||||
|
||||
// Discriminant > 0, 2 solutions available.
|
||||
d if d > 0.0 => {
|
||||
vec![
|
||||
(-b + discriminant.sqrt()) / (2.0 * a),
|
||||
(-b - discriminant.sqrt()) / (2.0 * a),
|
||||
]
|
||||
}
|
||||
|
||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||
};
|
||||
|
||||
// We also need to add solutions for the two ends of the cylinder, which
|
||||
// uses a similar method except backwards: check intersection points
|
||||
// with the correct z-plane and then see if the points are within the
|
||||
// circle.
|
||||
//
|
||||
// Luckily, this means we only need to care about one dimension at first,
|
||||
// and don't need to perform the quadratic equation method above.
|
||||
//
|
||||
// oz + t * rz = cz +- (len / 2)
|
||||
// t = (oz + cz +- (len / 2)) / rz
|
||||
let possible_z_intersections = {
|
||||
let o = rotated_ray_origin;
|
||||
let r = rotated_ray_direction;
|
||||
let c = rotated_cylinder_center;
|
||||
|
||||
vec![
|
||||
(o.z + c.z + cylinder.length / 2.0) / r.z,
|
||||
(o.z + c.z - cylinder.length / 2.0) / r.z,
|
||||
]
|
||||
};
|
||||
// Filter out all the solutions where the z does not lie in the circle
|
||||
solutions.extend(possible_z_intersections.into_iter().filter(|t| {
|
||||
let ray_point = self.origin + self.direction * (*t);
|
||||
ray_point.x.powi(2) + ray_point.y.powi(2) <= cylinder.radius.powi(2)
|
||||
}));
|
||||
|
||||
// Filter out solutions that don't have a valid Z position.
|
||||
let solutions = solutions
|
||||
.into_iter()
|
||||
.filter(|t| {
|
||||
let ray_point = self.origin + self.direction * (*t);
|
||||
|
||||
let rotated_ray_point = rotation_matrix * ray_point;
|
||||
let z = rotated_ray_point.z - rotated_cylinder_center.z;
|
||||
|
||||
// Check to see if z is between -len/2 and len/2
|
||||
z.abs() < cylinder.length / 2.0
|
||||
})
|
||||
.filter_map(|t| NotNan::new(t).ok());
|
||||
|
||||
// Return the minimum solution
|
||||
solutions.min().map(|t| t.into_inner())
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculate the rotation matrix between the 2 given vectors
|
||||
/// Based on the method here: https://math.stackexchange.com/a/897677
|
||||
fn compute_rotation_matrix(a: Vector3<f64>, b: Vector3<f64>) -> Matrix3<f64> {
|
||||
let cos_t = a.dot(&b);
|
||||
let sin_t = a.cross(&b).norm();
|
||||
let G = Matrix3::new(cos_t, -sin_t, 0.0, sin_t, cos_t, 0.0, 0.0, 0.0, 1.0);
|
||||
|
||||
// Basis
|
||||
let u = a;
|
||||
let v = (b - a.dot(&b) * a).normalize();
|
||||
let w = b.cross(&a);
|
||||
let F = Matrix3::from_columns(&[u, v, w]).try_inverse().unwrap();
|
||||
|
||||
F.try_inverse().unwrap() * G * F
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use nalgebra::Vector3;
|
||||
|
||||
use crate::scene_data::Sphere;
|
||||
|
||||
use super::Ray;
|
||||
|
||||
#[test]
|
||||
fn practice_problem_slide_154() {
|
||||
let ray = Ray {
|
||||
origin: Vector3::new(0.0, 0.0, 0.0),
|
||||
direction: Vector3::new(0.0, 0.0, -1.0),
|
||||
};
|
||||
let sphere = Sphere {
|
||||
center: Vector3::new(0.0, 0.0, -10.0),
|
||||
radius: 4.0,
|
||||
};
|
||||
|
||||
let point = ray.intersects_sphere_at(&sphere).map(|t| ray.eval(t));
|
||||
|
||||
// the intersection point in this case is (0, 0, -6)
|
||||
assert_eq!(point, Some(Vector3::new(0.0, 0.0, -6.0)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn practice_problem_slide_158() {
|
||||
let ray = Ray {
|
||||
origin: Vector3::new(0.0, 0.0, 0.0),
|
||||
direction: Vector3::new(0.0, 0.5, -1.0),
|
||||
};
|
||||
let sphere = Sphere {
|
||||
center: Vector3::new(0.0, 0.0, -10.0),
|
||||
radius: 4.0,
|
||||
};
|
||||
|
||||
// oops! In this case, the ray does not intersect the sphere.
|
||||
assert_eq!(ray.intersects_sphere_at(&sphere), None);
|
||||
}
|
||||
}
|
||||
|
|
121
assignment-1/src/scene/cylinder.rs
Normal file
121
assignment-1/src/scene/cylinder.rs
Normal file
|
@ -0,0 +1,121 @@
|
|||
use nalgebra::Vector3;
|
||||
use ordered_float::NotNan;
|
||||
|
||||
use crate::{math::compute_rotation_matrix, ray::Ray};
|
||||
|
||||
use super::data::ObjectKind;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Cylinder {
|
||||
pub center: Vector3<f64>,
|
||||
pub direction: Vector3<f64>,
|
||||
pub radius: f64,
|
||||
pub length: f64,
|
||||
}
|
||||
|
||||
impl ObjectKind for Cylinder {
|
||||
/// Given a cylinder, returns the first time at which this ray intersects the
|
||||
/// cylinder.
|
||||
///
|
||||
/// If there is no intersection point, returns None.
|
||||
fn intersects_ray_at(&self, ray: &Ray) -> Option<f64> {
|
||||
// Determine rotation matrix for turning the cylinder upright along the
|
||||
// Z-axis
|
||||
let target_direction = Vector3::new(0.0, 0.0, 1.0);
|
||||
let rotation_matrix =
|
||||
compute_rotation_matrix(self.direction, target_direction);
|
||||
|
||||
// Transform all parameters according to this rotation matrix
|
||||
let rotated_cylinder_center = rotation_matrix * self.center;
|
||||
let rotated_ray_origin = rotation_matrix * ray.origin;
|
||||
let rotated_ray_direction = rotation_matrix * ray.direction;
|
||||
|
||||
// Now that we know the cylinder is upright, we can start checking against
|
||||
// the formula:
|
||||
//
|
||||
// (ox + t*rx - cx)^2 + (oy + t*ry - cy)^2 = r^2
|
||||
//
|
||||
// where o{xy} is the ray origin, r{xy} is the ray direction, and c{xy} is
|
||||
// the cylinder center. The z will be taken care of after the fact. To
|
||||
// solve, we must put it into the form At^2 + Bt + c = 0. The variables
|
||||
// are:
|
||||
//
|
||||
// A: rx^2 + ry^2
|
||||
// B: 2(rx(ox - cx) + ry(oy - cy))
|
||||
// C: (cx - ox)^2 + (cy - oy)^2 - r^2
|
||||
let (a, b, c) = {
|
||||
let o = rotated_ray_origin;
|
||||
let r = rotated_ray_direction;
|
||||
let c = rotated_cylinder_center;
|
||||
|
||||
(
|
||||
r.x.powi(2) + r.y.powi(2),
|
||||
2.0 * (r.x * (o.x - c.x) + r.y * (o.y - c.y)),
|
||||
(c.x - o.x).powi(2) + (c.y - o.y).powi(2) - self.radius.powi(2),
|
||||
)
|
||||
};
|
||||
|
||||
let discriminant = b * b - 4.0 * a * c;
|
||||
|
||||
let mut solutions = match discriminant {
|
||||
// Discriminant < 0, means the equation has no solutions.
|
||||
d if d < 0.0 => vec![],
|
||||
|
||||
// Discriminant == 0
|
||||
d if d == 0.0 => vec![-b / 2.0 * a],
|
||||
|
||||
// Discriminant > 0, 2 solutions available.
|
||||
d if d > 0.0 => {
|
||||
vec![
|
||||
(-b + discriminant.sqrt()) / (2.0 * a),
|
||||
(-b - discriminant.sqrt()) / (2.0 * a),
|
||||
]
|
||||
}
|
||||
|
||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||
};
|
||||
|
||||
// We also need to add solutions for the two ends of the cylinder, which
|
||||
// uses a similar method except backwards: check intersection points
|
||||
// with the correct z-plane and then see if the points are within the
|
||||
// circle.
|
||||
//
|
||||
// Luckily, this means we only need to care about one dimension at first,
|
||||
// and don't need to perform the quadratic equation method above.
|
||||
//
|
||||
// oz + t * rz = cz +- (len / 2)
|
||||
// t = (oz + cz +- (len / 2)) / rz
|
||||
let possible_z_intersections = {
|
||||
let o = rotated_ray_origin;
|
||||
let r = rotated_ray_direction;
|
||||
let c = rotated_cylinder_center;
|
||||
|
||||
vec![
|
||||
(o.z + c.z + self.length / 2.0) / r.z,
|
||||
(o.z + c.z - self.length / 2.0) / r.z,
|
||||
]
|
||||
};
|
||||
// Filter out all the solutions where the z does not lie in the circle
|
||||
solutions.extend(possible_z_intersections.into_iter().filter(|t| {
|
||||
let ray_point = ray.eval(*t);
|
||||
ray_point.x.powi(2) + ray_point.y.powi(2) <= self.radius.powi(2)
|
||||
}));
|
||||
|
||||
// Filter out solutions that don't have a valid Z position.
|
||||
let solutions = solutions
|
||||
.into_iter()
|
||||
.filter(|t| {
|
||||
let ray_point = ray.eval(*t);
|
||||
let rotated_ray_point = rotation_matrix * ray_point;
|
||||
let z = rotated_ray_point.z - rotated_cylinder_center.z;
|
||||
|
||||
// Check to see if z is between -len/2 and len/2
|
||||
z.abs() < self.length / 2.0
|
||||
})
|
||||
.filter_map(|t| NotNan::new(t).ok());
|
||||
|
||||
// Return the minimum solution
|
||||
solutions.min().map(|t| t.into_inner())
|
||||
}
|
||||
}
|
|
@ -1,35 +1,27 @@
|
|||
use std::fmt::Debug;
|
||||
|
||||
use nalgebra::Vector3;
|
||||
|
||||
use crate::image::Color;
|
||||
use crate::ray::Ray;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Sphere {
|
||||
pub center: Vector3<f64>,
|
||||
pub radius: f64,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Cylinder {
|
||||
pub center: Vector3<f64>,
|
||||
pub direction: Vector3<f64>,
|
||||
pub radius: f64,
|
||||
pub length: f64,
|
||||
pub trait ObjectKind: Debug + Send + Sync {
|
||||
/// Determine where the ray intersects this object, returning the earliest
|
||||
/// time this happens. Returns None if no intersection occurs.
|
||||
///
|
||||
/// Also known as Trace_Ray in the slides, except not the part where it calls
|
||||
/// Shade_Ray.
|
||||
fn intersects_ray_at(&self, ray: &Ray) -> Option<f64>;
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Object {
|
||||
pub kind: ObjectKind,
|
||||
pub kind: Box<dyn ObjectKind>,
|
||||
|
||||
/// Index into the scene's material color list
|
||||
pub material: usize,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum ObjectKind {
|
||||
Sphere(Sphere),
|
||||
Cylinder(Cylinder),
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Rect {
|
||||
pub upper_left: Vector3<f64>,
|
||||
|
@ -59,6 +51,19 @@ pub struct Scene {
|
|||
}
|
||||
|
||||
impl Scene {
|
||||
/// Determine the color that should be used to fill this pixel
|
||||
///
|
||||
/// Also known as Shade_Ray in the slides.
|
||||
pub fn compute_pixel_color(&self, material_idx: usize) -> Color {
|
||||
// TODO: Does it make sense to make this function fallible from an API
|
||||
// design standpoint?
|
||||
self
|
||||
.material_colors
|
||||
.get(material_idx)
|
||||
.cloned()
|
||||
.unwrap_or(self.bkg_color)
|
||||
}
|
||||
|
||||
/// Determine the boundaries of the viewing window in world coordinates
|
||||
pub fn compute_viewing_window(&self, distance: f64) -> Rect {
|
||||
// Compute viewing directions
|
3
assignment-1/src/scene/mod.rs
Normal file
3
assignment-1/src/scene/mod.rs
Normal file
|
@ -0,0 +1,3 @@
|
|||
pub mod data;
|
||||
pub mod sphere;
|
||||
pub mod cylinder;
|
92
assignment-1/src/scene/sphere.rs
Normal file
92
assignment-1/src/scene/sphere.rs
Normal file
|
@ -0,0 +1,92 @@
|
|||
use nalgebra::Vector3;
|
||||
|
||||
use crate::ray::Ray;
|
||||
|
||||
use super::data::ObjectKind;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Sphere {
|
||||
pub center: Vector3<f64>,
|
||||
pub radius: f64,
|
||||
}
|
||||
|
||||
impl ObjectKind for Sphere {
|
||||
/// Given a sphere, returns the first time at which this ray intersects the
|
||||
/// sphere.
|
||||
///
|
||||
/// If there is no intersection point, returns None.
|
||||
fn intersects_ray_at(&self, ray: &Ray) -> Option<f64> {
|
||||
let a = ray.direction.x.powi(2)
|
||||
+ ray.direction.y.powi(2)
|
||||
+ ray.direction.z.powi(2);
|
||||
let b = 2.0
|
||||
* (ray.direction.x * (ray.origin.x - self.center.x)
|
||||
+ ray.direction.y * (ray.origin.y - self.center.y)
|
||||
+ ray.direction.z * (ray.origin.z - self.center.z));
|
||||
let c = (ray.origin.x - self.center.x).powi(2)
|
||||
+ (ray.origin.y - self.center.y).powi(2)
|
||||
+ (ray.origin.z - self.center.z).powi(2)
|
||||
- self.radius.powi(2);
|
||||
let discriminant = b * b - 4.0 * a * c;
|
||||
|
||||
match discriminant {
|
||||
// Discriminant < 0, means the equation has no solutions.
|
||||
d if d < 0.0 => None,
|
||||
|
||||
// Discriminant == 0
|
||||
d if d == 0.0 => Some(-b / (2.0 * a)),
|
||||
|
||||
d if d > 0.0 => {
|
||||
let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a);
|
||||
let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a);
|
||||
|
||||
Some(solution_1.min(solution_2))
|
||||
}
|
||||
|
||||
// Probably hit some NaN or Infinity value due to faulty inputs...
|
||||
_ => unreachable!("Invalid determinant value: {discriminant}"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use nalgebra::Vector3;
|
||||
|
||||
use crate::ray::Ray;
|
||||
use crate::scene::data::ObjectKind;
|
||||
|
||||
use super::Sphere;
|
||||
|
||||
#[test]
|
||||
fn practice_problem_slide_154() {
|
||||
let ray = Ray {
|
||||
origin: Vector3::new(0.0, 0.0, 0.0),
|
||||
direction: Vector3::new(0.0, 0.0, -1.0),
|
||||
};
|
||||
let sphere = Sphere {
|
||||
center: Vector3::new(0.0, 0.0, -10.0),
|
||||
radius: 4.0,
|
||||
};
|
||||
|
||||
let point = sphere.intersects_ray_at(&ray).map(|t| ray.eval(t));
|
||||
|
||||
// the intersection point in this case is (0, 0, -6)
|
||||
assert_eq!(point, Some(Vector3::new(0.0, 0.0, -6.0)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn practice_problem_slide_158() {
|
||||
let ray = Ray {
|
||||
origin: Vector3::new(0.0, 0.0, 0.0),
|
||||
direction: Vector3::new(0.0, 0.5, -1.0),
|
||||
};
|
||||
let sphere = Sphere {
|
||||
center: Vector3::new(0.0, 0.0, -10.0),
|
||||
radius: 4.0,
|
||||
};
|
||||
|
||||
// oops! In this case, the ray does not intersect the sphere.
|
||||
assert_eq!(sphere.intersects_ray_at(&ray), None);
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue