Exam 2
This commit is contained in:
parent
fdbbd5c51a
commit
ac6920c288
5 changed files with 99 additions and 0 deletions
1
exam-2/.gitignore
vendored
Normal file
1
exam-2/.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
||||||
|
exam2.pdf
|
4
exam-2/Makefile
Normal file
4
exam-2/Makefile
Normal file
|
@ -0,0 +1,4 @@
|
||||||
|
PANDOC := pandoc
|
||||||
|
|
||||||
|
exam2.pdf: exam2.md
|
||||||
|
$(PANDOC) -o $@ $<
|
BIN
exam-2/exam2-takehome.pdf
Normal file
BIN
exam-2/exam2-takehome.pdf
Normal file
Binary file not shown.
93
exam-2/exam2.md
Normal file
93
exam-2/exam2.md
Normal file
|
@ -0,0 +1,93 @@
|
||||||
|
---
|
||||||
|
geometry: margin=2cm
|
||||||
|
output: pdf_document
|
||||||
|
title: Exam 2
|
||||||
|
subtitle: CSCI 5607
|
||||||
|
date: \today
|
||||||
|
|
||||||
|
author: |
|
||||||
|
| Michael Zhang
|
||||||
|
| zhan4854@umn.edu $\cdot$ ID: 5289259
|
||||||
|
---
|
||||||
|
|
||||||
|
\renewcommand{\c}[1]{\textcolor{gray}{#1}}
|
||||||
|
|
||||||
|
## Reflection and Refraction
|
||||||
|
|
||||||
|
1. Consider a sphere $S$ made of solid glass ($\eta$ = 1.5) that has radius $r =
|
||||||
|
3$ and is centered at the location $s = (2, 2, 10)$ in a vaccum ($\eta =
|
||||||
|
1.0$). If a ray emanating from the point $e = (0, 0, 0)$ intersects $S$ at a
|
||||||
|
point $p = (1, 4, 8)$:
|
||||||
|
|
||||||
|
a. (2 points) What is the angle of incidence $\theta_i$ ?
|
||||||
|
|
||||||
|
First, the normal at the point $(1, 4, 8)$ is determined by subtracting
|
||||||
|
that point from the center $(2, 2, 10)$, which gets us $N = (2 - 1, 2 - 4,
|
||||||
|
10 - 8) = (1, -2, 2)$. Then, to determine the angle between
|
||||||
|
|
||||||
|
b. (1 points) What is the angle of reflection $\theta_r$ ?
|
||||||
|
|
||||||
|
c. (3 points) What is the direction of the reflected ray?
|
||||||
|
d. (3 points) What is the angle of transmission $\theta_t$ ?
|
||||||
|
e. (4 points) What is the direction of the transmitted ray?
|
||||||
|
|
||||||
|
Using Snell's law, we know that $\eta_1 \sin \theta_1 = \eta_2 \sin
|
||||||
|
\theta_2$. In this case, let material 1 be the vacuum, and material 2 be
|
||||||
|
the glass. Then, we have $1.0 \times \sin \theta_1$
|
||||||
|
|
||||||
|
## Geometric Transformations
|
||||||
|
|
||||||
|
2. \c{(8 points) Consider the airplane model below, defined in object
|
||||||
|
coordinates with its center at $(0, 0, 0)$, its wings aligned with the $\pm
|
||||||
|
x$ axis, its tail pointing upwards in the $+y$ direction and its nose facing
|
||||||
|
in the $+z$ direction. Derive a sequence of model transformation matrices
|
||||||
|
that can be applied to the vertices of the airplane to position it in space
|
||||||
|
at the location $p = (4, 4, 7)$, with a direction of flight $w = (2, 1, –2)$
|
||||||
|
and the wings aligned with the direction $d = (–2, 2, –1)$.}
|
||||||
|
|
||||||
|
The translation matrix is
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 0 & 0 & x \\
|
||||||
|
0 & 1 & 0 & y \\
|
||||||
|
0 & 0 & 1 & z \\
|
||||||
|
0 & 0 & 0 & 1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
=
|
||||||
|
\begin{bmatrix}
|
||||||
|
1 & 0 & 0 & 4 \\
|
||||||
|
0 & 1 & 0 & 4 \\
|
||||||
|
0 & 0 & 1 & 7 \\
|
||||||
|
0 & 0 & 0 & 1 \\
|
||||||
|
\end{bmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Since the direction of flight was originally $(0, 0, 1)$, we have to
|
||||||
|
transform it to $(2, 1, -2)$.
|
||||||
|
|
||||||
|
## Clipping
|
||||||
|
|
||||||
|
9. \c{Consider the triangle whose vertex positions, after the viewport
|
||||||
|
transformation, lie in the centers of the pixels: $p_0 = (3, 3), p_1 = (9,
|
||||||
|
5), p_2 = (11, 11)$.}
|
||||||
|
|
||||||
|
Starting at $p_0$, the three vectors are:
|
||||||
|
|
||||||
|
- $v_0 = p_1 - p_0 = (9 - 3, 5 - 3) = (6, 2)$
|
||||||
|
- $v_1 = p_2 - p_1 = (11 - 9, 11 - 5) = (2, 6)$
|
||||||
|
- $v_2 = p_0 - p_2 = (3 - 11, 3 - 11) = (-8, -8)$
|
||||||
|
|
||||||
|
The first edge vector $e$ would be $(6, 2)$, and the edge normal would be
|
||||||
|
that rotated by $90^\circ$.
|
||||||
|
|
||||||
|
a. \c{(6 points) Define the edge equations and tests that would be applied,
|
||||||
|
during the rasterization process, to each pixel $(x, y)$ within the bounding
|
||||||
|
rectangle $3 \le x \le 11, 3 \le y \le 11$ to determine if that pixel is
|
||||||
|
inside the triangle or not.}
|
||||||
|
|
||||||
|
b. \c{(3 points) Consider the three pixels $p_4 = (6, 4), p_5 = (7, 7)$, and
|
||||||
|
$p_6 = (10, 8)$. Which of these would be considered to lie inside the
|
||||||
|
triangle, according to the methods taught in class?}
|
||||||
|
|
||||||
|
|
|
@ -41,6 +41,7 @@
|
||||||
texlive.combined.scheme-full
|
texlive.combined.scheme-full
|
||||||
unzip
|
unzip
|
||||||
zip
|
zip
|
||||||
|
zathura
|
||||||
|
|
||||||
(python310.withPackages (p: with p; [ ipython numpy scipy sympy ]))
|
(python310.withPackages (p: with p; [ ipython numpy scipy sympy ]))
|
||||||
]) ++ (with toolchain; [
|
]) ++ (with toolchain; [
|
||||||
|
|
Loading…
Reference in a new issue