use crate::scene_data::{Sphere, Vec3}; /// A normalized Ray pub struct Ray { origin: Vec3, direction: Vec3, } impl Ray { pub fn eval(&self, time: f64) -> Vec3 { self.origin + self.direction * time } } /// Given a ray and a sphere, returns the first point at which this ray intersects the sphere. /// /// If there is no intersection point, returns None. pub fn ray_intersection_time(ray: &Ray, sphere: &Sphere) -> Option { let a = ray.direction.x.powi(2) + ray.direction.y.powi(2) + ray.direction.z.powi(2); let b = 2.0 * (ray.direction.x * (ray.origin.x - sphere.center.x) + ray.direction.y * (ray.origin.y - sphere.center.y) + ray.direction.z * (ray.origin.z - sphere.center.z)); let c = (ray.origin.x - sphere.center.x).powi(2) + (ray.origin.y - sphere.center.y).powi(2) + (ray.origin.z - sphere.center.z).powi(2) - sphere.radius.powi(2); let discriminant = b * b - 4.0 * a * c; match discriminant { // Discriminant < 0, means the equation has no solutions. d if d < 0.0 => return None, // Discriminant == 0 d if d == 0.0 => { return Some(-b / (2.0 * a)); } d if d > 0.0 => { let solution_1 = (-b + discriminant.sqrt()) / (2.0 * a); let solution_2 = (-b - discriminant.sqrt()) / (2.0 * a); return Some(solution_1.min(solution_2)); } _ => unreachable!("Invalid determinant value: {discriminant}"), } } #[cfg(test)] mod tests { use crate::scene_data::{Sphere, Vec3}; use super::{ray_intersection_time, Ray}; #[test] fn practice_problem_slide_154() { let ray = Ray { origin: Vec3::new(0.0, 0.0, 0.0), direction: Vec3::new(0.0, 0.0, -1.0), }; let sphere = Sphere { center: Vec3::new(0.0, 0.0, -10.0), radius: 4.0, }; let t = ray_intersection_time(&ray, &sphere).unwrap(); assert_eq!(ray.eval(t), Vec3::new(0.0, 0.0, -6.0)); } }