This commit is contained in:
Michael Zhang 2023-11-05 22:02:07 -06:00
parent efb6466919
commit f42dbda234
6 changed files with 268 additions and 13 deletions

69
extra-problem-3.typ Normal file
View File

@ -0,0 +1,69 @@
#import "@preview/prooftrees:0.1.0": *
#show math.eq: math.scripts
#let prooftree(..args) = tree(
tree_config: tree_config(
vertical_spacing: 6pt,
),
..args
)
= Problem 3
Assume that you have Id but not Eq at your disposal, and you can only use rules. Write down an abstraction unitl ("unitl" for "unit left") such that:
#prooftree(
axi[$ d ∈ [a =_A b] $],
uni[$ "unitl"(a, d) ∈ ["trans"(id(a), d) =_[a =_A b] d] $],
)
There's a trick here that you may notice if you remember the definition of "trans" and the computation rule for "idpeel":
$
"trans"(d,e) ≡ "apply"("idpeel"(d,(x)lambda y.y),e)
$
// #tree(
// axi[$a in A$],
// axi[$b in A$],
// axi[$c in "Id"(A, a, b)$],
// axi[$C(x, y, z) "set" [x in A, y in A, z in "Id"(A, x, y)]$],
// axi[$d(x) in C(x, x, "id"(x)) [x in A]$],
// nary(5)[$"idpeel"(c, d) in C(a, b, c)$],
// )
#prooftree(
axi[$a in A$],
axi[$C(x,y,z) "set" [x ∈ A, y ∈ A, z ∈ "Id"(A,x,y)]$],
axi[$d(x)∈ C(x,x,id(x)) [x∈A]$],
tri[$"idpeel"(id(a), d) = d(a) ∈ C(a, a, id(a))$],
)
In our problem, $"trans"(id(a), d)$ exactly matches this format.
This means we can just macro-expand the left side of the definition:
$
"trans"(id(a), d) &=_[a =_A b] d \
"apply"("idpeel"(id(a), (x)lambda y.y), d) &=_[a =_A b] d \
"apply"(((x)lambda y.y)(a), d) &=_[a =_A b] d \
"apply"((lambda y.y), d) &=_[a =_A b] d \
d &=_[a =_A b] d \
$
This means we're really looking for a definition for $"unitl"(a, d) in [d =_[a =_A b] d]$.
This can just be constructed using the canonical element $id(d)$. The full derivation looks like this:
#prooftree(
axi[$A "set"$],
axi[$a in A$],
axi[$b in A$],
axi[$d in [a =_A b]$],
nary(4, right_label: "Reflexivity")[$d = d in [a =_A b]$],
)
#prooftree(
axi[$A "set"$],
axi[$a in A$],
axi[$b in A$],
axi[$d in [a =_A b]$],
nary(4, right_label: "Id-introduction")[$id(d) in [d =_[a =_A b] d]$],
)

View File

@ -10,22 +10,56 @@ J : {A : Set}
(x y : A) (p : x y) C x y p
J C c x x refl = c x
-- Translation to PMLTT concepts
id : {A : Set} (a : A) a a
id a = refl
idpeel : {A : Set} {a b : A}
(c : a b)
{C : (x y : A) (z : x y) Set}
(d : (x : A) C x x (id x))
C a b c
idpeel {A} {a} {b} c {C} d = J C d a b c
-- Problem 2
inv : {A : Set} {a b : A}
(d : a b)
sym (sym d) d
inv {A} {a} {b} d =
J (λ x y p sym (sym p) p ) (λ x refl) a b d
J (λ x y p sym (sym p) p) (λ x refl) a b d
-- Problem 2
-- assoc : {A : Set} {a b c d : A}
-- → (e : a ≡ b)
-- → (f : b ≡ c)
-- → (g : c ≡ d)
-- → trans (trans e f) g ≡ trans e (trans f g)
-- assoc {a} {b} {c} {d} e f g =
-- let whatever = (λ f → J (λ x y p → trans (trans x f) y ≡ trans x (trans f y)) (λ x → {! !}) {! !} {! !} {! !}) in
-- {! !}
assoc : {A : Set} {a b c d : A}
(e : a b)
(f : b c)
(g : c d)
trans (trans e f) g trans e (trans f g)
assoc {a} {b} {c} {d} e f g =
let whatever = J {! !} {! !} {! !} {! !} {! !} in
{! !}
-- Problem 3
unitl : {A : Set}
(a : A)
{b : A}
(d : a b)
trans (id a) d d
unitl a d = id d
-- Problem 4
unitr : {A : Set}
{a : A}
(b : A)
(d : a b)
trans d (id b) d
unitr {A} {a} b d = J (λ x y p trans p (id y) p) (λ x id (id x)) a b d
-- Problem 5
-- ap : {A : Set}
-- Problem 6

View File

@ -94,8 +94,10 @@ First, let me reprint some rules from the textbook here to refer to them more ea
I can now form the derivation:
$ #tree(
axi[],
uni[$NN "set"$],
axi[$0 in NN$],
uni(right_label: "(1)")[$0 = 0 in NN$],
bin(right_label: "(1)")[$0 = 0 in NN$],
uni(right_label: "natrec")[$"natrec"(0, 0, (u, v) "suc"(v)) = 0 in NN$],
uni(right_label: "(4)")[$"eq"_"0" in "Eq"(NN, "natrec"(0, 0, (u, v) "suc"(v)), 0)$],
) $
@ -119,8 +121,9 @@ $ #pad(left: -4em, tree(
)) $
#tree(
axi[$"natrec"(x, "eq"_"0", "eq"_"suc") in "Eq"(NN, "natrec"(x, 0, (u, v) "suc"(v)), x) [x in NN]$],
uni(right_label: "(5, 11)")[$"natrec"(x, 0, (u, v) "suc"(v)) = x in NN [x in NN]$],
axi[],
uni(right_label: "(11)")[$"natrec"(x, "eq"_"0", "eq"_"suc") in "Eq"(NN, "natrec"(x, 0, (u, v) "suc"(v)), x) [x in NN]$],
uni(right_label: "(5)")[$"natrec"(x, 0, (u, v) "suc"(v)) = x in NN [x in NN]$],
uni(right_label: [#sym.plus.circle])[$plus.circle(x, 0) = x in NN [x in NN]$],
)

30
hwk2.agda Normal file
View File

@ -0,0 +1,30 @@
module hwk2 where
open import Data.Nat
open import Data.Sum
open import Data.Unit
open import Data.Empty
open import Relation.Binary.PropositionalEquality as Eq hiding (subst)
open Eq.≡-Reasoning
J : {A : Set}
(C : (x y : A) x y Set)
(c : (x : A) C x x refl)
(x y : A) (p : x y) C x y p
J C c x x refl = c x
subst : {A : Set} {a b : A}
(P : A Set)
(c : a b)
(p : P a)
P b
subst {A} {a} {b} P c = J (λ x y p (P x P y)) (λ x (λ a a)) a b c
discriminate : {A : Set} {B : Set} (s : A B) Set
discriminate (inj₁ x) =
discriminate (inj₂ y) =
problem2 : {A : Set} {B : Set}
(a : A) (b : B)
inj₁ a inj₂ b
problem2 a b p = subst discriminate p tt

45
hwk2.typ Normal file
View File

@ -0,0 +1,45 @@
#set document(title: "Homework 2", author: "Michael Zhang <zhan4854@umn.edu>")
#set page("us-letter")
#import "@preview/prooftrees:0.1.0": *
#import emoji: face
= Homework 2
Michael Zhang \<zhan4854\@umn.edu\>
#let c(body) = {
set text(gray)
body
}
#c[Assume you have $"Id"$ and $"U"$ but not $"Eq"$ (or $hat("Eq")$). Write down an abstraction $p$ such that
#tree(
axi[$a in A [Gamma]$],
axi[$b in B [Gamma]$],
bin[$p(a, b) in "Id"(A+B, "inl"(a), "inr"(b)) arrow.r emptyset [Gamma]$]
)
is derivable. You do not have to prove in your submission that it is derivable.]
Wait isn't this just the same as the Peano's fourth axiom as given in the book?
$
p(a, b) &equiv lambda ((x) "subst"(x, "tt")) \
$
where
- $P(m) = "Set"("when"(m, (x)hat(top), (y)hat({})))$
// (Agda implementation #face.smile.slight)
// ```agda
// discriminate : {A : Set} {B : Set} → (s : A ⊎ B) → Set
// discriminate (inj₁ x) =
// discriminate (inj₂ y) = ⊥
// problem2 : {A : Set} {B : Set}
// → (a : A) → (b : B)
// → inj₁ a ≢ inj₂ b
// problem2 a b p = subst discriminate p tt
// ```

74
scratch.typ Normal file
View File

@ -0,0 +1,74 @@
#import "@preview/prooftrees:0.1.0": *
= 1
#tree(
axi[$d in [a =_A b]$],
uni[$"inv"(d) in ["symm"("symm"(d)) =_[a =_A b] d]$],
)
Defined by:
$
"inv"(d) equiv "idpeel"(d, (x) id(id(x)))
$
Derivation tree:
#tree(
axi[],
uni[$A "set"$],
)
= 2
```
d∈[a=A b] e∈[b=A c]
-------------------
trans(d, e) ∈ [a =A c]
trans(d,e) ≡ apply(idpeel(d,(x)λy.y),e)
```
```
trans (trans e f) g == trans e (trans f g)
apply(idpeel(
apply(idpeel(e, (x)\y.y), f),
(x)\y.y,
), g)
```
= 3
#tree(
axi[$d in [a =_A b]$],
uni[$"unitl"(a, d) ∈ ["trans"(id(a), d) =_[a =_A b] d]$]
)
---
Simplifying the output type:
$
"trans"(id(a), d) &=_[a =_A b] d \
"apply"("idpeel"(id(a), (x)lambda y.y), d) &=_[a =_A b] d \
"apply"(((x)lambda y.y)(a), d) &=_[a =_A b] d \
"apply"((lambda y.y), d) &=_[a =_A b] d \
d &=_[a =_A b] d \
$
This is just a reflexive equality so can be satisfied by $"id"$:
$ "unitl"(a, d) equiv id(d) $
= 4
#tree(
axi[$d in [a =_A b]$],
uni[$"unitr"(d, b) in ["trans"(d, id(b)) =_[a =_A b] d]$],
)
$
"unitr"(d, b) equiv "idpeel"(d, (x)id(id(x))) \
$