#set document(title: "Homework 2", author: "Michael Zhang ") #set page("us-letter") #import "@preview/prooftrees:0.1.0": * #import emoji: face = Homework 2 Michael Zhang \ #let c(body) = { set text(gray) body } #c[Assume you have $"Id"$ and $"U"$ but not $"Eq"$ (or $hat("Eq")$). Write down an abstraction $p$ such that #tree( axi[$a in A [Gamma]$], axi[$b in B [Gamma]$], bin[$p(a, b) in "Id"(A+B, "inl"(a), "inr"(b)) arrow.r emptyset [Gamma]$] ) is derivable. You do not have to prove in your submission that it is derivable.] Wait isn't this just the same as the Peano's fourth axiom as given in the book? $ p(a, b) &equiv lambda ((x) "subst"(x, "tt")) \ $ where - $P(m) = "Set"("when"(m, (x)hat(top), (y)hat({})))$ // (Agda implementation #face.smile.slight) // ```agda // discriminate : {A : Set} {B : Set} → (s : A ⊎ B) → Set // discriminate (inj₁ x) = ⊤ // discriminate (inj₂ y) = ⊥ // problem2 : {A : Set} {B : Set} // → (a : A) → (b : B) // → inj₁ a ≢ inj₂ b // problem2 a b p = subst discriminate p tt // ```