csci8980-f23/extraexercises.agda

44 lines
No EOL
1.1 KiB
Agda

module extraexercises where
open import Data.Nat
open import Relation.Binary.PropositionalEquality as Eq
open Eq.≡-Reasoning
J : {A : Set}
(C : (x y : A) x y Set)
(c : (x : A) C x x refl)
(x y : A) (p : x y) C x y p
J C c x x refl = c x
inv : {A : Set} {a b : A}
(d : a b)
sym (sym d) d
inv {A} {a} {b} d =
J (λ x y p sym (sym p) p ) (λ x refl) a b d
-- Problem 2
assoc : {A : Set} {a b c d : A}
(e : a b)
(f : b c)
(g : c d)
trans (trans e f) g trans e (trans f g)
assoc {a} {b} {c} {d} e f g =
let whatever = J {! !} {! !} {! !} {! !} {! !} in
{! !}
-- Problem 6
-- id : {A : Set} → (a : A) → a ≡ a
-- id a = refl
-- interchange : {A : Set}
-- → (a : A)
-- → (d : id a ≡ id a)
-- → (e : id a ≡ id a)
-- → trans d e ≡ trans e d
-- interchange a d e =
-- let transde = trans d e in
-- let transed = trans e d in
-- let tmpl = J (λ x y p → {! !}) (λ x → {! !}) (id a) (id a) transde in
-- {! !}