lemma 3.9.1
This commit is contained in:
parent
700c466eaa
commit
130cda914b
3 changed files with 17 additions and 30 deletions
2
.vscode/settings.json
vendored
2
.vscode/settings.json
vendored
|
@ -3,7 +3,7 @@
|
|||
"gitdoc.enabled": false,
|
||||
"gitdoc.autoCommitDelay": 300000,
|
||||
"gitdoc.commitMessageFormat": "'auto gitdoc commit'",
|
||||
"agdaMode.connection.commandLineOptions": "",
|
||||
"agdaMode.connection.commandLineOptions": "--rewriting",
|
||||
"search.exclude": {
|
||||
"src/CubicalHott/**": true
|
||||
}
|
||||
|
|
|
@ -145,6 +145,7 @@ infix 3 ¬_
|
|||
infix 4 _≡_
|
||||
data _≡_ {A : Set l} : (a b : A) → Set l where
|
||||
instance refl : {x : A} → x ≡ x
|
||||
{-# BUILTIN REWRITE _≡_ #-}
|
||||
```
|
||||
|
||||
### 1.12.3 Disequality
|
||||
|
|
|
@ -393,14 +393,22 @@ example3∙6∙2 {A} {B} allProps = λ f g → funext λ x → allProps x (f x)
|
|||
module section3∙7 where
|
||||
postulate
|
||||
∥_∥ : Set l → Set l
|
||||
∣_∣ : {A : Set l} → (a : A) → ∥ A ∥
|
||||
witness : {A : Set l} → (x y : ∥ A ∥) → x ≡ y → Set l
|
||||
∣_∣ : {A : Set l} → A → ∥ A ∥
|
||||
trunc-witness : {A : Set l} → isProp (∥ A ∥)
|
||||
|
||||
rec-∥_∥ : (A : Set l) → {B : Set l}
|
||||
→ isProp B
|
||||
→ (f : A → B)
|
||||
→ Σ (∥ A ∥ → B) (λ g → (a : A) → g (∣ a ∣) ≡ f a)
|
||||
|
||||
trunc-rec : (A : Set) → {B : Set} → isProp B → (f : A → B)
|
||||
→ ∥ A ∥ → B
|
||||
|
||||
trunc-rec-1 : {A : Set} → {B : Set} → (Bprop : isProp B) → (f : A → B)
|
||||
→ (a : A) → trunc-rec A Bprop f (∣ a ∣) ≡ f a
|
||||
|
||||
open section3∙7 public
|
||||
{-# REWRITE trunc-rec-1 #-}
|
||||
```
|
||||
|
||||
### Definition 3.7.1
|
||||
|
@ -455,35 +463,13 @@ open definition3∙8∙1 public
|
|||
|
||||
```
|
||||
lemma3∙9∙1 : {P : Set} → isProp P → P ≃ ∥ P ∥
|
||||
lemma3∙9∙1 {P} Pprop = lemma3∙3∙3 Pprop prop2 ∣_∣ g
|
||||
lemma3∙9∙1 {P} Pprop = lemma3∙3∙3 Pprop witness ∣_∣ rec-func
|
||||
where
|
||||
open Σ
|
||||
rec-func : ∥ P ∥ → P
|
||||
rec-func = trunc-rec P Pprop id
|
||||
|
||||
thing : Σ (∥ P ∥ → P) (λ g → (a : P) → g ∣ a ∣ ≡ a)
|
||||
thing = rec-∥ P ∥ Pprop id
|
||||
|
||||
g : ∥ P ∥ → P
|
||||
g = Σ.fst thing
|
||||
|
||||
g-prop : (a : P) → g ∣ a ∣ ≡ a
|
||||
g-prop = Σ.snd thing
|
||||
|
||||
prop2 : isProp ∥ P ∥
|
||||
-- x y : ∥ P ∥
|
||||
prop2 x y =
|
||||
let
|
||||
gx = g x -- : g x
|
||||
gy = g y -- : g y
|
||||
eqP = Pprop gx gy -- : gx ≡ gy
|
||||
gpx = g-prop gx -- : g (∣ gx ∣) ≡ gx
|
||||
what = gpx ∙ eqP
|
||||
prevResult = (lemma3∙9∙1 {P} Pprop) .snd .isequiv.g-id
|
||||
in
|
||||
admit
|
||||
where
|
||||
postulate
|
||||
-- TODO: Finish this
|
||||
admit : x ≡ y
|
||||
witness : isProp ∥ P ∥
|
||||
witness = trunc-witness
|
||||
```
|
||||
|
||||
### Corollary 3.9.2
|
||||
|
|
Loading…
Reference in a new issue