diff --git a/src/HottBook/Chapter2.lagda.md b/src/HottBook/Chapter2.lagda.md index cb7a02d..db399be 100644 --- a/src/HottBook/Chapter2.lagda.md +++ b/src/HottBook/Chapter2.lagda.md @@ -11,6 +11,7 @@ open import HottBook.Chapter1 open import HottBook.Chapter1Util open import HottBook.Chapter2Lemma221 public open import HottBook.Chapter2Lemma231 public +open import HottBook.Chapter2Definition217 public private variable @@ -84,36 +85,34 @@ module lemma2∙1∙4 {l : Level} {A : Set l} where iv {x} {y} {z} {w} refl refl refl = refl ``` -### Definition 2.1.7 (pointed type) - -This comes first, since it is needed to define Theorem 2.1.6. - -``` -pointed : (l : Level) → Set (lsuc l) -pointed l = Σ (Set l) (λ A → A) -``` - -### Definition 2.1.8 (loop space) - -``` -Ω : {l : Level} → pointed l → Set l -Ω (A , a) = a ≡ a -``` - ### Theorem 2.1.6 (Eckmann-Hilton) ``` module theorem2∙1∙6 where - Ω² : {l : Level} → pointed l → Set l - Ω² p = Ω (Ω p , refl) + Ω-type : (A : Set) → (a : A) → Set + Ω-type A a = refl {x = a} ≡ refl - compose : {l : Level} {p : pointed l} → (Ω² p) × (Ω² p) → Ω² p - compose (a , b) = a ∙ b + compose1 : {A : Set} {a : A} → fst (Ω (A , a)) → fst (Ω (A , a)) → fst (Ω (A , a)) + compose1 x y = x ∙ y - -- commute : {l : Level} {p : pointed l} → (α β : Ω² p) → α ∙ β ≡ β ∙ α - -- commute {l} {p @ (A , a₀)} α β = {! !} + Ω² : {l : Level} → Set* l → Set* l + Ω² {l} = Ω[_] {l = l} 2 + + compose2 : {l : Level} {A : Set l} {a : A} → fst (Ω² (A , a)) → fst (Ω² (A , a)) → fst (Ω² (A , a)) + compose2 x y = x ∙ y + + compose2-commutative : {l : Level} {A : Set l} {a : A} (x y : fst (Ω² (A , a))) → compose2 x y ≡ compose2 y x + compose2-commutative {l} {A} {a} x y = {! !} ``` +### Definition 2.1.7 (pointed type) + +{{#include HottBook.Chapter2Definition217.md:pointedtype}} + +### Definition 2.1.8 (loop space) + +{{#include HottBook.Chapter2Definition217.md:loopspace}} + ## 2.2 Functions are functors ### Lemma 2.2.1 diff --git a/src/HottBook/Chapter2Definition217.lagda.md b/src/HottBook/Chapter2Definition217.lagda.md new file mode 100644 index 0000000..e0d1b55 --- /dev/null +++ b/src/HottBook/Chapter2Definition217.lagda.md @@ -0,0 +1,30 @@ +``` +{-# OPTIONS --rewriting #-} + +module HottBook.Chapter2Definition217 where + +open import Agda.Primitive +open import HottBook.Chapter1 +``` + +[//]: <> (ANCHOR: pointedtype) + +``` +Set* : (l : Level) → Set (lsuc l) +Set* l = Σ (Set l) (λ A → A) +``` + +[//]: <> (ANCHOR_END: pointedtype) + +[//]: <> (ANCHOR: loopspace) + +``` +Ω : {l : Level} → Set* l → Set* l +Ω (A , a) = (a ≡ a) , refl + +Ω[_] : {l : Level} → ℕ → Set* l → Set* l +Ω[ zero ] (A , a) = (A , a) +Ω[ suc n ] (A , a) = Ω[ n ] (Ω (A , a)) +``` + +[//]: <> (ANCHOR_END: loopspace) \ No newline at end of file diff --git a/src/HottBook/Chapter6.lagda.md b/src/HottBook/Chapter6.lagda.md index 2952b22..35264af 100644 --- a/src/HottBook/Chapter6.lagda.md +++ b/src/HottBook/Chapter6.lagda.md @@ -300,10 +300,10 @@ module Suspension where A : Set l postulate - Susp : Set → Set + Susp : Set l → Set l N : Susp A S : Susp A - merid : A → (N {A} ≡ S {A}) + merid : A → (N {A = A} ≡ S {A = A}) rec-Susp : {B : Set l} → (n s : B) → (m : A → n ≡ s) → Susp A → B rec-Susp-N : {B : Set l} → (n s : B) → (m : A → n ≡ s) → rec-Susp n s m N ≡ n @@ -371,7 +371,7 @@ module definition6∙5∙2 where ### Lemma 6.5.3 ``` -Map* : {l : Level} → (A B : pointed l) → Set l +Map* : {l : Level} → (A B : Set* l) → Set l Map* (A , a₀) (B , b₀) = Σ (A → B) (λ f → f a₀ ≡ b₀) ``` @@ -379,13 +379,13 @@ Adjoining a disjoint basepoint ``` module lol where - _₊ : {l : Level} → Set l → pointed l + _₊ : {l : Level} → Set l → Set* l A ₊ = A + Lift 𝟙 , inr (lift tt) ``` ``` open lol -lemma6∙5∙3 : {l : Level} (A : Set l) → (B* @ (B , b₀) : pointed l) +lemma6∙5∙3 : {l : Level} (A : Set l) → (B* @ (B , b₀) : Set* l) → (Map* (A ₊) B*) ≃ (A → B) lemma6∙5∙3 A B* @ (B , b₀) = f , qinv-to-isequiv (mkQinv g forward {! !}) where @@ -409,6 +409,24 @@ lemma6∙5∙3 A B* @ (B , b₀) = f , qinv-to-isequiv (mkQinv g forward {! !} -- g (f' x) gives us b₀ ``` +### Lemma 6.5.4 + +``` +Susp* : {l : Level} → Set* l → Set* l +Susp* (A , a₀) = Susp A , N + +lemma6∙5∙4 : {l : Level} + → (A* @ (A , a₀) : Set* l) + → (B* @ (B , b₀) : Set* l) + → Map* {l = l} (Susp* A*) B* ≃ Map* A* (Ω B*) +lemma6∙5∙4 A* B* = f , {! !} + where + f : Map* (Susp* A*) B* → Map* A* (Ω B*) + f (f' , p) = {! f'' , ? !} + where + f'' : A* → Ω B* +``` + ## 6.6 Cell complexes ```