update ch3+4

This commit is contained in:
Michael Zhang 2024-06-30 21:22:14 -05:00
parent 0a5abb61e4
commit a44ff3cd4f
5 changed files with 191 additions and 45 deletions

View file

@ -253,26 +253,26 @@ open axiom2∙10∙3
### Theorem 2.11.2
```
module lemma2∙11∙2 where
open ≡-Reasoning
-- module lemma2∙11∙2 where
-- open ≡-Reasoning
i : {l : Level} {A : Type l} {a x1 x2 : A}
→ (p : x1 ≡ x2)
→ (q : a ≡ x1)
→ transport (λ y → a ≡ y) p q ≡ q ∙ p
i {l} {A} {a} {x1} {x2} p q j = {! !}
-- i : {l : Level} {A : Type l} {a x1 x2 : A}
-- → (p : x1 ≡ x2)
-- → (q : a ≡ x1)
-- → transport (λ y → a ≡ y) p q ≡ q ∙ p
-- i {l} {A} {a} {x1} {x2} p q j = {! !}
ii : {l : Level} {A : Type l} {a x1 x2 : A}
→ (p : x1 ≡ x2)
→ (q : x1 ≡ a)
→ transport (λ y → y ≡ a) p q ≡ sym p ∙ q
ii {l} {A} {a} {x1} {x2} p q = {! !}
-- ii : {l : Level} {A : Type l} {a x1 x2 : A}
-- → (p : x1 ≡ x2)
-- → (q : x1 ≡ a)
-- → transport (λ y → y ≡ a) p q ≡ sym p ∙ q
-- ii {l} {A} {a} {x1} {x2} p q = {! !}
iii : {l : Level} {A : Type l} {a x1 x2 : A}
→ (p : x1 ≡ x2)
→ (q : x1 ≡ x1)
→ transport (λ y → y ≡ y) p q ≡ sym p ∙ q ∙ p
iii {l} {A} {a} {x1} {x2} p q = {! !}
-- iii : {l : Level} {A : Type l} {a x1 x2 : A}
-- → (p : x1 ≡ x2)
-- → (q : x1 ≡ x1)
-- → transport (λ y → y ≡ y) p q ≡ sym p ∙ q ∙ p
-- iii {l} {A} {a} {x1} {x2} p q = {! !}
```
### Remark 2.12.6

View file

@ -39,6 +39,14 @@ module section3∙7 where
data ∥_∥ (A : Type) : Type where
_ : (a : A) → ∥ A ∥
witness : (x y : ∥ A ∥) → x ≡ y
rec-∥_∥ : (A : Type) → {B : Type} → isProp B → (f : A → B)
→ Σ (∥ A ∥ → B) (λ g → (a : A) → g ( a ) ≡ f a)
rec-∥ A ∥ {B} BisProp f = g , λ _ → refl
where
g : ∥ A ∥ → B
g a = f a
g (witness x y i) = BisProp (g x) (g y) i
open section3∙7
```
@ -64,5 +72,8 @@ postulate
```
lemma3∙9∙1 : {P : Type} → isProp P → P ≃ ∥ P ∥
lemma3∙9∙1 prop = _ , {! !}
lemma3∙9∙1 {P} prop = _ , qinv-to-isequiv (mkQinv inv {! !} {! !})
where
inv : ∥ P ∥ → P
inv = {! rec-∥ P ∥ !}
```

View file

@ -81,19 +81,19 @@ is-1-type A = (x y : A) → (p q : x ≡ y) → (r s : p ≡ q) → r ≡ s
### Lemma 3.1.8
```
lemma3∙1∙8 : {A : Set} → isSet A → is-1-type A
lemma3∙1∙8 {A} A-set x y p q r s =
let g = λ q → A-set x y p q in
let
what : {q' : x ≡ y} (r : q ≡ q') → g q ∙ r ≡ g q'
what r =
let what3 = apd g r in
let what4 = lemma2∙11∙2.i r (g q) in
let what5 = {! !} in
sym what4 ∙ what3
in
-- let what2 = what r in
{! !}
-- lemma3∙1∙8 : {A : Set} → isSet A → is-1-type A
-- lemma3∙1∙8 {A} A-set x y p q r s =
-- let g = λ q → A-set x y p q in
-- let
-- what : {q' : x ≡ y} (r : q ≡ q') → g q ∙ r ≡ g q'
-- what r =
-- let what3 = apd g r in
-- let what4 = lemma2∙11∙2.i r (g q) in
-- let what5 = {! !} in
-- sym what4 ∙ what3
-- in
-- -- let what2 = what r in
-- {! !}
```
### Example 3.1.9
@ -184,6 +184,7 @@ theorem3∙2∙2 double-neg = conclusion
let y = what ∙ x in
sym y ∙ foranyu
-- postulate
huhh : (Σ.fst e) (fbool u) ≡ fbool u
huhh =
let
@ -193,7 +194,8 @@ theorem3∙2∙2 double-neg = conclusion
x e a =
{! axiom2∙10∙3.forward ? !}
in
sym (x e (fbool u)) ∙ nextStep
{! !}
-- sym (x e (fbool u)) ∙ nextStep
finalStep : (x : bool) → ¬ ((Σ.fst e) x ≡ x)
finalStep (lift true) p =
@ -274,6 +276,39 @@ module definition3∙4∙3 where
```
module section3∙7 where
data ∥_∥ (A : Set) : Set where
_ : (a : A) → ∥ A ∥
postulate
∥_∥ : Set → Set
_ : {A : Set} → (a : A) → ∥ A ∥
witness : {A : Set} → (x y : ∥ A ∥) → x ≡ y → Set
rec-∥_∥ : (A : Set) → {B : Set} → isProp B → (f : A → B)
→ Σ (∥ A ∥ → B) (λ g → (a : A) → g ( a ) ≡ f a)
open section3∙7
```
### Definition 3.7.1
## 3.9 The principle of unique choice
### Lemma 3.9.1
```
lemma3∙9∙1 : {P : Set} → isProp P → P ≃ ∥ P ∥
lemma3∙9∙1 {P} prop = lemma3∙3∙3 prop prop2 _ g
where
thing : Σ (∥ P ∥ → P) (λ g → (a : P) → g a ≡ id a)
thing = rec-∥ P ∥ prop id
g = Σ.fst thing
g-prop = Σ.snd thing
prop2 : isProp ∥ P ∥
prop2 x y =
let a = g-prop (g x) in
let b = g-prop (g y) in
let eqProp = prop (g x) (g y) in
let
concat : g ( g x ) ≡ g ( g y )
concat = a ∙ eqProp ∙ (sym b)
in
{! prop ? !}
```

View file

@ -3,6 +3,10 @@ module HottBook.Chapter3Definition331 where
open import Agda.Primitive
open import HottBook.Chapter1
private
variable
l : Level
```
## Definition 3.3.1
@ -10,7 +14,7 @@ open import HottBook.Chapter1
[//]: <> (ANCHOR: isProp)
```
isProp : (P : Set) → Set
isProp : (P : Set l) → Set l
isProp P = (x y : P) → x ≡ y
```

View file

@ -4,6 +4,20 @@ module HottBook.Chapter4 where
open import HottBook.Chapter1
open import HottBook.Chapter2
open import HottBook.Chapter3
private
variable
l : Level
```
# Chapter 4 Equivalences
```
record satisfies-equivalence-properties {A B : Set} {f : A → B} (isequiv : (A → B) → Set) : Set where
field
qinv→isequiv : qinv f → isequiv f
isequiv→qinv : isequiv f → qinv f
isequiv-isProp : isProp (isequiv f)
```
## 4.1 Quasi-inverses
@ -11,14 +25,32 @@ open import HottBook.Chapter3
### Lemma 4.1.1
```
lemma4∙1∙1 : {A B : Set}
→ (f : A → B)
→ qinv f
→ qinv f ≃ ((x : A) → x ≡ x)
lemma4∙1∙1 f q = {! !}
lemma4∙1∙1 : {A B : Set} → (f : A → B) → qinv f → qinv f ≃ ((x : A) → x ≡ x)
lemma4∙1∙1 {A} f q = {! !}
where
ff : qinv f → (x : A) → x ≡ x
ff
ff = {! !}
```
### Lemma 4.1.2
```
open section3∙7
lemma4∙1∙2 : {A : Set} {a : A} (q : a ≡ a)
→ isSet (a ≡ a)
→ ((x : A) → ∥ a ≡ x ∥)
→ ((p : a ≡ a) → p ∙ q ≡ q ∙ p)
→ Σ ((x : A) → x ≡ x) (λ f → f a ≡ q)
lemma4∙1∙2 {A} {a} q prop1 g prop3 = (λ x → {! !}) , {! !}
where
allsets : (x y : A) → isSet (x ≡ y)
allsets x .x refl refl refl refl = refl
B : (x : A) → Set
B x = Σ (x ≡ x) (λ r → (s : a ≡ x) → r ≡ (sym s) ∙ q ∙ s)
BisProp : (a : A) → isProp (B a)
BisProp a x y = {! !}
```
### Theorem 4.1.3
@ -26,8 +58,72 @@ lemma4∙1∙1 f q = {! !}
There exist types A and B and a function f : A → B such that qinv( f ) is not a mere proposition.
```
theorem4∙1∙3 : {A B : Set}
→ (f : A → B)
→ isProp (qinv f) → ⊥
theorem4∙1∙3 f p = {! !}
theorem4∙1∙3 : ∀ {l} {A B : Set l}
→ Σ (A → B) (λ f → isProp (qinv f) → ⊥)
theorem4∙1∙3 = {! !} , {! !}
where
goal : Σ (Set (lsuc l)) (λ X → isProp ((x : X) → x ≡ x) → ⊥)
```
## 4.2 Half adjoint equivalences
### Definition 4.2.1
```
record ishae {A B : Set} (f : A → B) : Set where
constructor mkIshae
field
g : B → A
η : (g ∘ f) id
ε : (f ∘ g) id
τ : (x : A) → ap f (η x) ≡ ε (f x)
```
### Lemma 4.2.2
### Theorem 4.2.3
```
theorem4∙2∙3 : {A B : Set} (f : A → B) → qinv f → ishae f
theorem4∙2∙3 {A} {B} f (mkQinv g ε η) = mkIshae g' η' ε' τ
where
g' : B → A
g' = g
η' : (g' ∘ f) id
η' = η
ε' : (f ∘ g') id
ε' x = {! !}
τ : (x : A) → ap f (η' x) ≡ ε' (f x)
τ x = {! !}
```
### Definition 4.2.7
```
module definition4∙2∙7 where
linv : ∀ {A B} (f : A → B) → Set
linv {A} {B} f = Σ (B → A) (λ g → (g ∘ f) id)
rinv : ∀ {A B} (f : A → B) → Set
rinv {A} {B} f = Σ (B → A) (λ g → (f ∘ g) id)
```
### Definition 4.2.10
```
module definition4∙2∙10 where
open definition4∙2∙7
lcoh : ∀ {A} {B} → (f : A → B) → linv f → rinv f → Set
-- lcoh f (g , η) (g , ε) = ?
```
### Theorem 4.2.13
```
theorem4∙2∙13 : {A B : Set} (f : A → B) → isProp (ishae f)
```