This commit is contained in:
Michael Zhang 2024-07-14 17:59:07 -04:00
parent 21b96f236c
commit c16fcb2217
5 changed files with 146 additions and 55 deletions

View file

@ -3,7 +3,7 @@
"gitdoc.enabled": false,
"gitdoc.autoCommitDelay": 300000,
"gitdoc.commitMessageFormat": "'auto gitdoc commit'",
"agdaMode.connection.commandLineOptions": "--rewriting",
"agdaMode.connection.commandLineOptions": "--rewriting --without-K",
"search.exclude": {
"src/CubicalHott/**": true
}

View file

@ -66,7 +66,7 @@ record Σ {l₁ l₂} (A : Set l₁) (B : A → Set l₂) : Set (l₁ ⊔ l₂)
field
fst : A
snd : B fst
open Σ
open Σ public
{-# BUILTIN SIGMA Σ #-}
syntax Σ A (λ x → B) = Σ[ x ∈ A ] B
@ -145,6 +145,7 @@ infix 3 ¬_
infix 4 _≡_
data _≡_ {A : Set l} : (a b : A) → Set l where
instance refl : {x : A} → x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REWRITE _≡_ #-}
```

View file

@ -486,7 +486,7 @@ module lemma2∙4∙12 where
### Definition 2.6.1
```
definition2∙6∙1 : {A B : Set} {x y : A × B}
definition2∙6∙1 : {A B : Set l} {x y : A × B}
→ (p : x ≡ y)
→ (Σ.fst x ≡ Σ.fst y) × (Σ.snd x ≡ Σ.snd y)
definition2∙6∙1 p = ap Σ.fst p , ap Σ.snd p
@ -496,11 +496,11 @@ definition2∙6∙1 p = ap Σ.fst p , ap Σ.snd p
```
module theorem2∙6∙2 where
pair-≡ : {A B : Set} {x y : A × B} → (Σ.fst x ≡ Σ.fst y) × (Σ.snd x ≡ Σ.snd y) → x ≡ y
pair-≡ : {A B : Set l} {x y : A × B} → (Σ.fst x ≡ Σ.fst y) × (Σ.snd x ≡ Σ.snd y) → x ≡ y
pair-≡ (refl , refl) = refl
theorem2∙6∙2 : {A B : Set} {x y : A × B}
→ isequiv (definition2∙6∙1 {A} {B} {x} {y})
theorem2∙6∙2 : {A B : Set l} {x y : A × B}
→ isequiv (definition2∙6∙1 {A = A} {B = B} {x = x} {y = y})
theorem2∙6∙2 {A} {B} {x} {y} = qinv-to-isequiv (mkQinv pair-≡ backward forward)
where
backward : (definition2∙6∙1 ∘ pair-≡) id
@ -508,6 +508,9 @@ module theorem2∙6∙2 where
forward : (pair-≡ ∘ definition2∙6∙1) id
forward refl = refl
pair-≃ : {A B : Set l} {x y : A × B} → (x ≡ y) ≃ ((fst x ≡ fst y) × (snd x ≡ snd y))
pair-≃ = definition2∙6∙1 , theorem2∙6∙2
open theorem2∙6∙2 using (pair-≡)
```
@ -808,7 +811,12 @@ module lemma2∙11∙2 where
→ (p : x1 ≡ x2)
→ (q : x1 ≡ x1)
→ transport (λ y → y ≡ y) p q ≡ sym p ∙ q ∙ p
iii {l} {A} {a} {x1} {x2} refl refl = refl
iii refl q =
let
a = i1 q
b = i2 q
in b ∙ ap (refl ∙_) a
where open lemma2∙1∙4
```
### Theorem 2.11.3

View file

@ -35,6 +35,11 @@ isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
```
𝟙-is-Set : isSet 𝟙
𝟙-is-Set tt tt refl refl = refl
𝟙-isProp : isProp 𝟙
𝟙-isProp x y =
let (_ , equiv) = theorem2∙8∙1 x y in
isequiv.g equiv tt
```
### Example 3.1.3
@ -48,17 +53,55 @@ isSet A = (x y : A) → (p q : x ≡ y) → p ≡ q
```
-is-Set : isSet
-is-Set zero zero refl refl = refl
-is-Set (suc x) (suc y) refl refl = refl
-is-Set x y p q = wtf4
where
open theorem2∙13∙1
open axiom2∙10∙3
open isequiv
cp = encode x y p
cq = encode x y q
wtf : (x y : ) → (p q : code x y) → p ≡ q
wtf zero zero p q = 𝟙-isProp p q
wtf (suc x) (suc y) p q = wtf x y p q
wtf2 : (x y : ) → (p q : code x y) → (p ≡ q) → (decode x y p) ≡ (decode x y q)
wtf2 x y p q r = ap (decode x y) r
wtf3 : {x y : } → (p : x ≡ y) → (p ≡ decode x y (encode x y p))
wtf3 {x} {y} p = sym (theorem2∙13∙1 x y .snd .h-id p)
wtf4 : p ≡ q
wtf4 = (wtf3 p) ∙ wtf2 x y cp cq (wtf x y cp cq) ∙ sym (wtf3 q)
```
### Example 3.1.5
TODO: DO this without path induction
```
×-Set : {A B : Set} → isSet A → isSet B → isSet (A × B)
×-Set {A} {B} A-set B-set (xa , xb) (ya , yb) refl refl = refl
×-Set : {A B : Set l} → isSet A → isSet B → isSet (A × B)
×-Set {A = A} {B = B} A-set B-set (xa , xb) (ya , yb) p q = goal
where
open theorem2∙6∙2
open axiom2∙10∙3
p' : (xa ≡ ya) × (xb ≡ yb)
p' = definition2∙6∙1 p
q' : (xa ≡ ya) × (xb ≡ yb)
q' = definition2∙6∙1 q
lol : {A B : Set l} {x y : A × B} → (x ≡ y) ≡ ((fst x ≡ fst y) × (snd x ≡ snd y))
lol = ua pair-≃
convert : (p : (xa , xb) ≡ (ya , yb)) → (xa ≡ ya) × (xb ≡ yb)
convert p = definition2∙6∙1 p
goal : p ≡ q -- (p : (xa, xb)≡(ya, yb)) (q : (xa, xb)≡(ya, yb))
-- (p': xa≡ya × xb≡yb)
goal2 = p' ≡ q'
goal = {! ap (λ z → ?) goal2 !}
```
### Example 3.1.6
@ -262,12 +305,6 @@ lemma3∙3∙2 : {P : Set}
→ (x0 : P)
→ P ≃ 𝟙
lemma3∙3∙2 {P} pp x0 =
let
𝟙-isProp : isProp 𝟙
𝟙-isProp x y =
let (_ , equiv) = theorem2∙8∙1 x y in
isequiv.g equiv tt
in
lemma3∙3∙3 pp 𝟙-isProp (λ _ → tt) (λ _ → x0)
```
@ -639,7 +676,7 @@ module lemma3∙11∙9 where
forward p = y (sym (aContr a))
where
y : (q : a ≡ a) → transport P q p ≡ p
y refl = refl
y q = {! !}
backward : (g ∘ f) id

View file

@ -7,6 +7,7 @@ module HottBook.Chapter6 where
open import HottBook.Chapter1
open import HottBook.Chapter2
open import HottBook.Chapter3
open import HottBook.CoreUtil
private
variable
@ -22,7 +23,7 @@ Using the approach from here: https://github.com/HoTT/HoTT-Agda/blob/master/old/
## 6.2 Induction principles and dependent paths
```
dep-path : {A : Set} {x y : A} → (P : A → Set) → (p : x ≡ y) → (u : P x) → (v : P y) → Set
dep-path : {l l2 : Level} {A : Set l} {x y : A} → (P : A → Set l2) → (p : x ≡ y) → (u : P x) → (v : P y) → Set l2
dep-path P p u v = transport P p u ≡ v
syntax dep-path P p u v = u ≡[ P , p ] v
@ -39,27 +40,28 @@ module Interval where
I : Set
I = #I
0I : I
0I 1I : I
0I = #0
1I : I
1I = #1
postulate
seg : 0I ≡ 1I
postulate
rec-Interval : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → I → B
rec-Interval-1 : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → rec-Interval b₀ b₁ s 0I ≡ b₀
rec-Interval-2 : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → rec-Interval b₀ b₁ s 1I ≡ b₁
{-# REWRITE rec-Interval-1 #-}
{-# REWRITE rec-Interval-2 #-}
rec-Interval : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → I → B
rec-Interval b₀ b₁ s #0 = b₀
rec-Interval b₀ b₁ s #1 = b₁
postulate
rec-Interval-3 : {B : Set} → (b₀ b₁ : B) → (s : b₀ ≡ b₁) → apd (rec-Interval b₀ b₁ s) seg ≡ s
{-# REWRITE rec-Interval-3 #-}
rec-Interval-d : {B : I → Set} → (b₀ : B 0I) → (b₁ : B 1I) → (s : b₀ ≡[ B , seg ] b₁) → (x : I) → B x
rec-Interval-d b₀ b₁ s #0 = b₀
rec-Interval-d b₀ b₁ s #1 = b₁
postulate
rec-Interval-d-3 : {B : I → Set} → (b₀ : B 0I) → (b₁ : B 1I) → (s : b₀ ≡[ B , seg ] b₁) → apd (rec-Interval-d {B} b₀ b₁ s) seg ≡ s
{-# REWRITE rec-Interval-d-3 #-}
open Interval public
```
@ -69,9 +71,18 @@ open Interval public
lemma6∙3∙1 : isContr I
lemma6∙3∙1 = 1I , f
where
goal : (sym seg) ≡[ (λ z → 1I ≡ z) , seg ] refl
f : (x : I) → 1I ≡ x
f #0 = sym seg
f #1 = refl
f = rec-Interval-d (sym seg) refl goal
goal2 : transport (λ z → 1I ≡ z) seg (sym seg) ≡ refl
goal = goal2
goal3 : (sym seg) ∙ seg ≡ refl
goal2 = lemma2∙11∙2.i seg (sym seg) ∙ goal3
goal3 = lemma2∙1∙4.ii1 seg
```
### Lemma 6.3.2
@ -103,34 +114,68 @@ base = #base
postulate
loop : base ≡ base
S¹-rec : {P : S¹ → Set} → (b : P base) → (l : b ≡[ P , loop ] b) → ((x : S¹) → P x)
S¹-rec b l #base = b
rec-S¹ : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → ((x : S¹) → P x)
rec-S¹ b l #base = b
postulate
S¹-rec-loop : {P : S¹ → Set} → (b : P base) → (l : b ≡[ P , loop ] b) → apd {P = P} (S¹-rec b l) loop ≡ l
{-# REWRITE S¹-rec-loop #-}
rec-S¹-loop : {l : Level} {P : S¹ → Set l} → (b : P base) → (l : b ≡[ P , loop ] b) → apd {P = P} (rec-S¹ b l) loop ≡ l
{-# REWRITE rec-S¹-loop #-}
```
### Lemma 6.4.1
```
-- lemma6∙4∙1 : loop ≢ refl
-- lemma6∙4∙1 loop≡refl =
-- {! !}
-- where
-- f : {A : Set} {x : A} {p : x ≡ x} → (S¹ → A)
-- f {A = A} {x = x} {p = p} s =
-- let p' = transportconst A loop x
-- in (S¹-rec x (p' ∙ p)) s
-- -- f-loop : {A : Set} {x : A} {p : x ≡ x} → apd f loop ≡ p
-- -- f-loop {x = x} = S¹-rec-loop x ?
lemma6∙4∙1 : loop ≢ refl
lemma6∙4∙1 loop≡refl = goal3
where
-- goal : (s : S¹) (p : s ≡ s) → p ≡ refl
-- goal s p = z1 ∙ z2 ∙ z3
-- where
-- f : {A : Set} {x : A} {p : x ≡ x} → S¹ → A
-- f {x = x} {p = p} = rec-S¹ x p
-- goal : ⊥
-- z1 : p ≡ apd f loop
-- z1 = refl
-- goal2 : (A : Set l) (a : A) (p : a ≡ a) → isSet A
-- goal = example3∙1∙9 (goal2 {! !} {! !} {! !})
-- z2 : apd f loop ≡ apd f refl
-- z2 = ap (apd f) loop≡refl
-- -- goal3 : ∀ (s : S¹) (p : s ≡ s) → p ≡ refl
-- goal2 A a p x y r s = {! !}
-- z3 : apd f refl ≡ refl
-- z3 = refl
goal2 : ∀ {l} {A : Set l} → isSet A
goal2 x .x refl refl = refl
goal3 : ⊥
goal3 = example3∙1∙9 (goal2 {A = Set})
-- where
-- f : {l : Level} {A : Set l} {x : A} {p : x ≡ x} → (S¹ → A)
-- f {A = A} {x = x} {p = p} s =
-- let p' = transportconst A loop x
-- in (rec-S¹ x (p' ∙ p)) s
-- -- f-loop : {A : Set} {x : A} {p : x ≡ x} → apd f loop ≡ p
-- -- f-loop {x = x} = S¹-rec-loop x ?
-- goal : ⊥
-- goal2 : ∀ {l} → (A : Set l) (a : A) (p : a ≡ a) → isSet A
-- goal = example3∙1∙9 (goal2 Set 𝟙 refl)
-- goal3 : ∀ (s : S¹) (p : s ≡ s) → p ≡ refl
-- goal2 {l} A a p x y r s = {! !}
-- where
-- f' = f {A = A} {x = a} {p = p}
-- test = apd f' loop ∙ sym (apd f' loop)
-- z1 : p ≡ apd f' loop
-- z1 = {! !}
-- z2 : apd f' loop ≡ apd f' refl
-- z2 = {! !}
-- z3 : apd f' refl ≡ refl
-- z3 = refl
-- wtf = let wtf = z1 ∙ z2 ∙ z3 in {! !}
```