diff --git a/src/HottBook/Chapter4.lagda.md b/src/HottBook/Chapter4.lagda.md index 3d5abff..7b08bd2 100644 --- a/src/HottBook/Chapter4.lagda.md +++ b/src/HottBook/Chapter4.lagda.md @@ -6,6 +6,7 @@ open import HottBook.Chapter1Util open import HottBook.Chapter2 open import HottBook.Chapter2Exercises open import HottBook.Chapter3 +open import HottBook.CoreUtil private variable @@ -119,16 +120,16 @@ There exist types A and B and a function f : A → B such that qinv( f ) is not ``` theorem4∙1∙3 : ∀ {l} → Σ (Set l) (λ A → Σ (Set l) (λ B → Σ (A → B) (λ f → isProp (qinv f) → ⊥))) -- theorem4∙1∙3 {l} = goal --- where --- goal : ∀ {l} → Σ (Set l) (λ A → Σ (Set l) (λ B → Σ (A → B) (λ f → isProp (qinv f) → ⊥))) + -- where + -- goal : ∀ {l} → Σ (Set l) (λ A → Σ (Set l) (λ B → Σ (A → B) (λ f → isProp (qinv f) → ⊥))) --- goal2 : ∀ {l} → Σ (Set l) (λ X → isProp ((x : X) → x ≡ x) → ⊥) --- goal {l} = Σ.fst (goal2 {l}) , {! !} , {! !} , {! !} + -- goal2 : ∀ {l} → Σ (Set l) (λ X → isProp ((x : X) → x ≡ x) → ⊥) + -- goal {l} = Σ.fst (goal2 {l}) , {! !} , {! !} , {! !} --- X : ∀ {l} → Set (lsuc l) --- X {l} = Σ (Set l) (λ A → ∥ Lift 𝟚 ≡ A ∥) + -- X : ∀ {l} → Set (lsuc l) + -- X {l} = Σ (Set l) (λ A → ∥ Lift 𝟚 ≡ A ∥) --- goal2 {l} = X {l} , ? + -- goal2 {l} = X {lsuc l} , ? ``` ## 4.2 Half adjoint equivalences @@ -148,6 +149,17 @@ record ishae {A B : Set} (f : A → B) : Set where ### Lemma 4.2.2 ``` +lemma4∙2∙2 : ∀ {A B} + → (f : A → B) → (g : B → A) + → (η : (g ∘ f) ∼ id) + → (ε : (f ∘ g) ∼ id) + → ((x : A) → ap f (η x) ≡ ε (f x)) ≃ ((y : B) → ap g (ε y) ≡ η (g y)) +lemma4∙2∙2 f g η ε = {! !} +``` + +``` +ishae→qinv : {A B : Set} (f : A → B) → ishae f → qinv f +ishae→qinv f (mkIshae g η ε _) = mkQinv g ε η ``` ### Theorem 4.2.3 @@ -169,6 +181,13 @@ theorem4∙2∙3 {A} {B} f (mkQinv g ε η) = mkIshae g' η' ε' τ τ x = {! !} ``` +### Definition 4.2.4 + +``` +fib : ∀ {A B} → (f : A → B) → (y : B) → Set +fib {A = A} f y = Σ A (λ x → f x ≡ y) +``` + ### Definition 4.2.7 ``` @@ -178,6 +197,14 @@ module definition4∙2∙7 where rinv : ∀ {A B} (f : A → B) → Set rinv {A} {B} f = Σ (B → A) (λ g → (f ∘ g) ∼ id) +open definition4∙2∙7 +``` + +### Lemma 4.2.9 + +``` +lemma4∙2∙9 : ∀ {A B} (f : A → B) → qinv f → isContr (linv f) × isContr (rinv f) +lemma4∙2∙9 f q = ({! !} , {! !}) , ({! !} , {! !}) ``` ### Definition 4.2.10 @@ -194,4 +221,20 @@ module definition4∙2∙10 where ``` theorem4∙2∙13 : {A B : Set} (f : A → B) → isProp (ishae f) +``` + +## 4.3 Bi-invertible maps + +### Definition 4.3.1 + +``` +biinv : {A B : Set} (f : A → B) → Set +biinv f = linv f × rinv f +``` + +### Theorem 4.3.2 + +``` +theorem4∙3∙2 : ∀ {A B} → (f : A → B) → isProp (biinv f) +theorem4∙3∙2 f = {! !} ``` \ No newline at end of file