diff --git a/src/HottBook/Chapter2.lagda.md b/src/HottBook/Chapter2.lagda.md index bb1150d..73fe35a 100644 --- a/src/HottBook/Chapter2.lagda.md +++ b/src/HottBook/Chapter2.lagda.md @@ -337,31 +337,23 @@ id-qinv = mkQinv id (λ _ → refl) (λ _ → refl) ``` module example2∙4∙8 where - private - variable - A : Set - x y z : A - - i : (p : x ≡ y) → qinv (p ∙_) - i p = mkQinv g forward backward + i : {A : Set} → {x y z : A} → (p : x ≡ y) → qinv (p ∙_) + i {A} {x} {y} {z} p = mkQinv g forward backward where g = (sym p) ∙_ forward : (_∙_ p ∘ g) ∼ id forward q = lemma2∙1∙4.iv p (sym p) q ∙ ap (_∙ q) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i2 q) - -- backward : (g ∘ (_∙_ p)) ∼ id - backward : {y z : A} → (q : {! y ≡ z !}) → {! !} ≡ q - -- sym p ∙ (q ∙ p) ≡ q - backward q = {! !} + backward : (q : y ≡ z) → sym p ∙ (p ∙ q) ≡ q + backward q = lemma2∙1∙4.iv (sym p) p q ∙ ap (_∙ q) (lemma2∙1∙4.ii1 p) ∙ sym (lemma2∙1∙4.i2 q) - ii : (p : x ≡ y) → qinv (_∙ p) - ii p = mkQinv g forward backward + ii : {A : Set} → {x y z : A} → (p : x ≡ y) → qinv (_∙ p) + ii {A} {x} {y} {z} p = mkQinv g forward backward where + g : z ≡ y → z ≡ x g = _∙ (sym p) forward : (_∙ p ∘ g) ∼ id - -- (q ∙ sym(p)) ∙ p ≡ q forward q = sym (lemma2∙1∙4.iv q (sym p) p) ∙ ap (q ∙_) (lemma2∙1∙4.ii1 p) ∙ sym (lemma2∙1∙4.i1 q) backward : (g ∘ _∙ p) ∼ id - -- (q ∙ p) ∙ (sym p) ≡ q backward q = sym (lemma2∙1∙4.iv q p (sym p)) ∙ ap (q ∙_) (lemma2∙1∙4.ii2 p) ∙ sym (lemma2∙1∙4.i1 q) ``` @@ -1039,4 +1031,4 @@ theorem2∙15∙5 {X = X} {A = A} {B = B} = qinv-to-isequiv (mkQinv g forward ba backward : (f : (x : X) → A x × B x) → g (equation2∙15∙4 f) ≡ f backward f = funext λ x → refl where open axiom2∙9∙3 -``` \ No newline at end of file +``` \ No newline at end of file