
On the Formalization of
Higher Inductive Types and

Synthetic Homotopy
Theory

Floris van Doorn

May 2018

Dissertation Committee:
Jeremy Avigad
Steve Awodey

Ulrik Buchholtz
Mike Shulman



Submitted in partial fulfillment of the requirements for
the degree of

Doctor of Philosophy in Pure and Applied Logic
Department of Philosophy
Carnegie Mellon University

ii



目录

1 Introduction 1

2 Preliminaries 12
2.1 Martin-Löf Type Theory . . . . . . . . . . 12

2.1.1 Function Types . . . . . . . . . . . 13
2.1.2 Pair Types . . . . . . . . . . . . . 15
2.1.3 Universes . . . . . . . . . . . . . . 17
2.1.4 Inductive Types . . . . . . . . . . 18

2.2 Homotopy Type Theory . . . . . . . . . . 24
2.2.1 Paths . . . . . . . . . . . . . . . . 25
2.2.2 Equivalences . . . . . . . . . . . . 27
2.2.3 More on paths . . . . . . . . . . . 29
2.2.4 Truncated Types . . . . . . . . . . 38
2.2.5 Pointed Types . . . . . . . . . . . 43
2.2.6 Higher Inductive Types . . . . . . 49

2.3 Lean . . . . . . . . . . . . . . . . . . . . . 55

3 Higher Inductive Types 61
3.1 Propositional Truncation . . . . . . . . . . 62
3.2 Non-recursive 2-HITs . . . . . . . . . . . . 72
3.3 Colimits . . . . . . . . . . . . . . . . . . . 84

4 Homotopy Theory 112
4.1 Computing π3(S2) . . . . . . . . . . . . . . 113

4.1.1 The long exact sequence of homo-
topy groups . . . . . . . . . . . . . 113

ii



4.1.2 Computation of homotopy groups . 124
4.2 Eilenberg-MacLane Spaces . . . . . . . . . 126

4.2.1 Construction of Eilenberg-MacLane
spaces . . . . . . . . . . . . . . . . 128

4.2.2 Uniqueness . . . . . . . . . . . . . 129
4.2.3 Equivalence of categories . . . . . . 132

4.3 The Smash Product . . . . . . . . . . . . . 134
4.3.1 The Category of Pointed Types . . 135
4.3.2 Basic Properties of the Smash Prod-

uct . . . . . . . . . . . . . . . . . . 140
4.3.3 Adjunction . . . . . . . . . . . . . 151
4.3.4 Symmetric monoidal product . . . 157

5 The Serre Spectral Sequence 170
5.1 Spectral Sequences . . . . . . . . . . . . . 172
5.2 Exact Couples . . . . . . . . . . . . . . . . 178
5.3 Spectra . . . . . . . . . . . . . . . . . . . 184
5.4 Spectral Sequences for Cohomology . . . . 192
5.5 Spectral Sequences for Homology . . . . . 204
5.6 Applications of Spectral Sequences . . . . 210

Conclusion 221

Acknowledgements 228

Bibliography 230

iii



Chapter 1

Introduction

The goal of this dissertation is to present synthetic
homotopy theory in the setting of homotopy type theory.
We will present various results in this framework, most
notably the construction of the Atiyah-Hirzebruch and
Serre spectral sequences for cohomology, which have been
fully formalized in the Lean proof assistant.

Homotopy type theory, often abbreviated HoTT, is
a version of type theory. Type theory is a language for
formal mathematics, in which every object has a compu-
tational interpretation, so that it can also function as a
programming language. It can be used as a foundation
of mathematics as an alternative to set theory.

A key feature of HoTT is that the equality in a
space corresponds to the path spaces; a path between
two points a and b is a proof that a = b. Two paths that
are not homotopic give different (unequal) proofs of this
equality. The fact that we identify proofs of an equal-
ity with a path means that every construction in HoTT
respects paths.

1



Many different researchers contributed to the homo-
topical interpretation of type theory. Steve Awodey and
Michael Warren gave a model of type theory in abstract
homotopy theory [? ]. Benno van den Berg and Richard
Garner published a paper addressing the coherence is-
sue [? ]. Independently, Vladimir Voevodsky gave a
model of type theory without identity types in simpli-
cial sets and formulated the univalence axiom, which he
proved consistent [? ? ]. The univalence axiom states
that homotopy equivalences between two types (spaces)
corresponds to equality between them [? ]. This means
that every construction done in HoTT automatically re-
spects homotopy equivalence, which is a very convenient
property. Also, Voevodsky proved that a consequence
of the univalence axiom is function extensionality. This
states that two functions are equal when they are homo-
topic.

The fact that all constructions are homotopy invari-
ant also leads to some challenges. It is not always clear
whether we can define a concept of homotopy theory in
homotopy type theory. For example, singular homology
is a homotopy invariant notion, but in the construction
we use the set of all simplices in a space, which is not a
homotopy invariant notion. In this case, we can define ho-
mology in a different way (see Section 5.5). However, for
other definitions, such as the Grassmannian manifolds, it
is an open problem whether they can be constructed in
homotopy type theory.

A new concept in homotopy type theory is the con-
cept of higher inductive types. These are types that gener-
alize both cell complexes in homotopy theory, and induc-

2



tively generated types (like N) in type theory. Higher
inductive types can be used to construct many spaces
and operations on spaces often encountered in homotopy
theory.

Type theory is a convenient language for computer
proof assistants. These are programs that allow you to
write formal proofs in a specified language, and then
the computer checks whether the proof is correct and
complete. There are many major results formalized in
proof assistants, such as the four colour theorem [? ],
Feit-Thompson theorem [? ] and the Kepler conjecture
(Hales’ Theorem) [? ]. HoTT is a type theory, and it
has been implemented in various proof assistants, such as
Coq [? ], Agda [? ], cubicaltt [? ], Lean [? ] and various
experimental proof assistants. One disadvantage of for-
mally verifying proofs in a proof assistant is that it takes
a lot of work spelling out all details. For example, doing
very basic homotopy theory (not using homotopy type
theory) already takes a lot of effort [? ]. In HoTT this
effect is mitigated, because many homotopical concepts
are close to the foundations of the type theory, making
formal proofs only a little more work than a paper proof.

Various results have been proven and formalized in
HoTT, such as the the Seifert–van Kampen theorem [?
], the Blakers–Massey theorem [? ] and a development
of cellular cohomology [? ]. Another main result (which
has not been formalized) is the computation of π4(S3) [?
], which relies on conjectured properties of the smash
product, which we will discuss in Section 4.3.

HoTT gives novel proof methods and new insights to
homotopy theory. A basic property of HoTT is path in-

3



duction, which states that when proving something for
a path with one free endpoint, one may assume that
the path is the constant path. This corresponds to the
fact that the path space with one fixed endpoint is con-
tractible. Another technique is the encode-decode method,
for calculating the path space of certain spaces [? ]. More-
over, the proof of the Blakers–Massey theorem has been
translated back to homotopy theory, resulting in a new
proof with novel ideas [? ].

Homotopy type theory has models in most model
categories [? ? ], which are categorical models for homo-
topy theory. These models were inspired by the groupoid
model [? ]. Other models for HoTT include the simpli-
cial set model [? ? ? ] and the cubical set model [? ?
]. More generally, all Grothendieck (∞, 1)-toposes model
HoTT [? ].1 Moreover, it is conjectured that all elemen-
tary (∞, 1)-toposes form models of HoTT [? ].

Type Theory

Homotopy type theory is based on Martin-Löf type
theory (also called intuitionistic type theory or construc-
tive type theory) [? ? ]. In this type theory there are
types, like the integers Z, vectors Rn; and complex func-
tions C→ C. There are also terms, which have a unique
type.2 For example the number −2 has type Z (written

1General Grothendieck (∞, 1)-toposes model HoTT with uni-
verses á la Tarski. This notion is weaker than universes á la Rus-
sell, which are usually considered in HoTT. We explain Russell
universes in Section 2.1.3.

2To be more precise: in many type theories there are terms with
multiple types, for example due to universe cumulativity, but we

4



as −2 : Z), the vector (1, 2, 3, . . . , n) has type Rn and we
have the exponential function exp : C → C. One can
think of types as sets of objects (and indeed, there is a
model of type theory where the types are exactly sets),
but there are different interpretations, such as the types-
as-spaces interpretation that homotopy type theory pro-
vides. The fact that terms have a unique type means that
the 2 : Z and the 2 : R are different objects. It might be
helpful to think of data types in a programming language,
in which the int 2 is stored differently in memory than
the float 2. Of course, the canonical inclusion i : Z ↪→ R
does satisfy i(2) = 2. Type theory has a primitive notion
of computation, so that for example 2 + 3 computes to 5.
Every function that is explicitly defined in type theory
therefore describes an algorithm that can be executed.
This means that type theory can be used as a program-
ming language, and many programming languages make
use of a type system. The congruence closure of this
notion of computation is called definitional equality or
judgmental equality, and if two terms are judgmentally
equal, one can replace one for the other in any term.

There are several methods to construct new types
out of existing ones. For example we can form the func-
tion type A→ B for types A and B, the cartesian prod-
uct type A×B and the coproduct or sum A+B. Propo-
sitions can also be interpreted as types by the Curry-
Howard isomorphism [? ? ], and under this interpreta-
tion A×B is the conjunction of A and B, the sum A+B

is the disjunction and A → B is the implication. Fur-

will ignore these issues. Moreover, the type theory of Lean has
unique typing [? ].

5



thermore, there are dependent function types ∏
(x:A) P (x)

and dependent sum types ∑
(x:A) P (x), which correspond

to the universal quantification ∀(x : A), P (x) and exis-
tential quantification ∃(x : A), P (x), respectively. So
for example the transitivity of ≤ on N can be expressed
as ∏

(k,m,n:N) k ≤ m → m ≤ n → k ≤ n, and a term
of this type is a proof that ≤ is transitive. The P in∏

(x:A) P (x) and ∑
(x:A) P (x) is called a dependent type,

since it is a type depending on a term x : A. It has type
P : A→ U , where U is the universe of (small) types. The
dependent function type ∏

(x:A) P (x) consists of functions
f that send terms a : A to a term f(a) : P (a). Note that
the type of f(a) depends on the input a. The dependent
sum type ∑

(x:A) P (x) consists of dependent pairs (a, x)
with a : A and x : P (a), where the type of x depends on
a.

Given two terms a, b : A, we can form the identity
type which we write as a =A b or a = b. As a proposition
we view a =A b as the statement that a and b are equal.
In homotopy type theory these identity types correspond
to the path space of the type A.

Homotopy Type Theory

There are various versions of dependent type the-
ory with different rules for the identity type. Some type
theories have a reflection rule, which states that if we
have a proof p : a = b, then a and b are judgmentally
equal. Type theories with this rule are often called exten-
sional. This is a convenient rule, but these type theories
have meta-theoretic properties that are often seen as un-

6



desirable. For example, checking whether a term t has
type A is not decidable anymore. Since this operation
can be viewed as “checking the correctness of a proof,”
one often wants to work in a type theory with decidable
type-checking.

In intensional type theory, without the reflection
rule, multiple approaches can be taken for the identity
type. In some versions, there is a rule that any two
proofs of the same equality are themselves equal. This
rule, often called uniqueness of identity proofs or axiom
K states that if p, q : a = b, then there is a proof of
p = q. In homotopy type theory, this rule is rejected.
In the types-as-spaces interpretation of homotopy type
theory, terms of the identity type a =A b are interpreted
as paths in A from a to b. We have familiar operations
on paths: given two paths p : a =A b and q : b =A c, we
write p · q : a = c for the concatenation of p and q. Fur-
thermore, we have the inverse path p−1 : b = a and the
constant path refla : a = a. We also have higher paths,
the identity type p =a=Ab q consists of homotopies from
path p to q. We can form higher path types between two
homotopies, and there are also operations on these higher
paths. In this way every type comes equipped with the
structure of a higher groupoid.

In 2011, higher inductive types were introduced in
homotopy type theory [? ? ? ? ]. With ordinary induc-
tive types we specify constructors that generate the type,
for example the natural numbers are generated by zero
0 : N and the successor function succ : N→ N. Higher in-
ductive types are generated not only by these “point con-
structors” but also by “path constructors,” which specify

7



the inhabitants of paths or higher paths in the type. For
example, the circle S1 is generated by a point ? : S1 and a
loop ` : ? = ?. The rest of the structure of S1 is built from
these constructors. Using higher inductive types we can
construct many other spaces in homotopy theory, such
as Eilenberg-MacLane spaces and homotopy pushouts.

As mentioned before in this introduction, we can
use HoTT to do homotopy theory. We think of types as
spaces and we think of maps between types as continuous
maps between those spaces. Then we can define usual no-
tions in homotopy theory, as long as they are homotopy
invariant: homotopy equivalences, suspensions, spheres,
etcetera. This is a synthetic way to do homotopy theory:
many concepts, such as spaces and paths are uninter-
preted constants of the type theory. This is opposed to
analytic homotopy theory, where one studies topological
spaces up to homotopy equivalence. This distinction is
similar to the distinction for elementary geometry, which
we can do synthetically (points and lines are undefined
concepts) or analytically (we are working in R2). Syn-
thetic geometry limits the things one can state or prove,
but these proofs are applicable in every model of the ax-
ioms. The same is true for synthetic homotopy theory:
the proofs performed synthetically are true in all models
of HoTT.

In this dissertation I will not be very precise about
the exact rules of the type theory we are using. We will
present the constructions and proofs in such a way that
they can be performed in the “HoTT book” [? ]. Most
of the results in this dissertation have been formalized in
the Lean proof assistant [? ]. The HoTT mode we used

8



in Lean has very similar rules to the HoTT book, and
the differences are not relevant for the constructions in
this dissertation. A concept closely related to homotopy
type theory is univalent mathematics, a term coined by
Vladimir Voevodsky for the development of mathemat-
ics where one takes homotopy types as primitive objects,
and reasons about them using type-theoretic reasoning
and the univalence axiom. This is pursued in the proof
assistant UniMath [? ]. There are also radically differ-
ent type theories which are studied in homotopy type
theory. These are called “cubical type theories” because
they all have a primitive notion of cubes. Examples in-
clude the cubical type theory described in [? ], which
was implemented in the proof assistant cubicaltt [? ],
and computational higher-dimensional type theory [? ],
on which the proof assistant RedPRL is based [? ]. These
type theories are extensions of the type theory presented
in the HoTT book, which we will call book-HoTT. In
book-HoTT the univalence axiom is an axiom: an un-
interpreted constant of a certain type. This breaks the
computational behavior of the type theory. For exam-
ple not every closed term of type N computes to either 0
or the successor of another number. These cubical type
theories add primitive concepts to the theory to make
the univalence axiom provable, and therefore all terms in
these system do compute.

We will often want to compare homotopy type the-
ory with ordinary homotopy theory. We will use the ad-
verb “classically” to refer to the concepts and theorems in
homotopy theory that do not involve HoTT.3 Conversely,

3This use of classically has nothing to do with the word clas-

9



we will say that something is provable in HoTT if we can
prove it in book-HoTT.

Contents

In Chapter 2 we review the basic concepts in ho-
motopy type theory. For a more detailed and thorough
exposition, we refer to [? ]. Alternative introductions
can be found in [? ] and [? ]. In Section 2.1 we intro-
duce the basic concepts of type theory: functions, pairs,
universes, and inductive types such as the identity type.
In Section 2.2 we will introduce the basics of homotopy
type theory. In particular we will formally state the uni-
valence axiom and present higher inductive types. In
Section 2.3 we will discuss the Lean proof assistant in
more detail.

In Chapter 3 we will study higher inductive types in-
ternally in HoTT. The main problem we will focus on is
the interdefinability of higher inductive types. In partic-
ular, we try to construct various higher inductive types
from the homotopy pushout. We will define the proposi-
tional truncation in Section 3.1, nonrecursive higher in-
ductive types with 2-path constructors in Section 3.2 and
work towards defining certain localizations in Section 3.3.

In Chapter 4 we present some synthetic homotopy
theory in HoTT. In Section 4.1 we will describe the for-

sical in “classical logic,” involving the law of excluded middle or
the axiom of choice. In homotopy type theory one can consistently
assume the law of excluded middle or the axiom of choice, formu-
lated in a precise way so that it corresponds to what it usually
means. However, doing so removes the computational content of
all notions defined using it.

10



malization of the long exact sequence of homotopy groups
and its application to compute π3(S2). Although this
construction has been described before in HoTT in [?
, Section 8.4] and [? , Section 2.5.1], no formally veri-
fied proof has been given before. In Section 4.2 we will
study Eilenberg-MacLane spaces, which are spaces with
only one nontrivial homotopy group. Eilenberg-MacLane
spaces have been defined in HoTT before [? ]. Here
we prove the (classically known) results that Eilenberg-
MacLane spaces are unique, and give an equivalence of
categories between the category of (abelian) groups and
an appropriate class of pointed types. In Section 4.3 we
will discuss the smash product. The ultimate goal is to
prove that the smash product forms a 1-coherent symmet-
ric monoidal product on pointed types, and we will give
one approach towards proving this using a Yoneda-style
argument.

In Chapter 5 we develop the theory of spectral se-
quences in HoTT. We give the construction of a spectral
sequence from an exact couple (in Section 5.2) and show
how to construct an exact couple from a tower of spec-
tra (in Section 5.3). We construct the classically-known
Atiyah-Hirzebruch and Serre spectral sequences for co-
homology (in Section 5.4), and give some ideas towards
doing the same for their counterparts in homology (in
Section 5.5).

11



Chapter 2

Preliminaries

In this chapter we will give a brief overview of type
theory and homotopy type theory. We cannot cover all
the subtleties, so readers new to (homotopy) type theory
should consult the homotopy type theory book [? ].

In Section 2.3 we will discuss the proof assistant
Lean. All main results in this dissertation have been
formalized in Lean.

2.1 Martin-Löf Type Theory
As mentioned in the introduction, homotopy type

theory is based on a system called Martin-Löf type the-
ory or intuitionistic type theory. There are types and
there are terms, which have a unique type. There is a no-
tion of computation. Two terms t and s are considered
judgmentally equal or definitionally equal, denoted t ≡ s

if t and s compute to the same term.
We are working in dependent type theory, which

12



means that types can depend on terms. For example,
there is a type of vectors of length n : N in type A,
denoted vectorA(n). In this case vectorA is a dependent
type over N. An example term in this type family is
(5, 6, 7, 8) : vectorN(4). When we say that a term has a
unique type, we mean that it has a unique type up to
definitional equality. In our example, we also have that
(5, 6, 7, 8) : vectorN(2 + 2), because 2 + 2 ≡ 4. More gen-
erally, if we have two definitionally equal types A ≡ B

and if t : A, then t : B. Logically (under the types-as-
propositions interpretation) dependent types are predi-
cates. We will explain the topological interpretation of
dependent types at the end of Section 2.1.2.

In the remainder of this section we will discuss the
type formers of Martin-Löf type theory more closely.

2.1.1 Function Types
Given a type A and a family of types B depending on

A, we can form the dependent function type (also called
product type or pi type)

(x : A)→ B(x) or
∏
x:A

B(x).

We will use the former notation in this document. A
term f : (x : A) → B(x) is a function that sends each
element a : A to an element4 f(a) : B(a). We also use

4Formally, B(a) is the term B(x) where we substitute a for x.
In Section 2.1.3 we will see that we can treat B as a function into
a universe, and that alternatively we can view B(x) and B(a) as
function applications.

13



the notation fa or f a for f(a). Note that the type of
f(x) depends on x. We can form functions using lambda-
abstraction. Given a term t(x) : B(x), we can form the
term λx. t(x) : (x : A) → B(x), which is the function
x 7→ t(x), i.e. the function that sends x to t(x). We get
the computation rule

(λx. t(x))a ≡ t(a)

for a : A, which is called the beta-rule or beta-reduction.
We also have an eta-rule, which states that every function
is a lambda abstraction. This means that for f : (x :
A)→ B(x) we have

f ≡ λx. f(x).

We will often define functions by writing f(x) :≡ t (where
x may occur in t), which formally means that we define
f as λx. t.

An important special case occurs when B does not
depend on A. In this case the dependent function type
(x : A) → B is written as A → B, which is the type of
functions from type A to type B.

Logically, the type A → B is interpreted as the im-
plication A ⇒ B and the type (x : A) → B(x) is in-
terpreted as the universal quantification ∀(x : A), B(x).
Topologically, a function f : A → B corresponds to a
continuous map from A to B. The type A → B is the
mapping space from A to B. We will explain the topo-
logical interpretation of (x : A) → B(x) at the end of
Section 2.1.2.

We can define the identity function

id ≡ idA :≡ λ(x :A). x : A→ A

14



and the composition of functions: if f : A → B and g :
B → C, then g ◦ f :≡ λx. g(f(x)) : A→ C. Given b : B,
we also have a constant function 0b :≡ λx. b : A→ B.

We will often write some arguments of a function
implicitly. Such arguments are written with curly braces
in the type. For example, given a dependent type C over
N, we write

g : {n : N} → C(n)→ C(n+ 1)

to emphasize that the first argument of g is implicit. In
this case, for c : C(n) we will write g(c) for g applied
(implicitly) to n and applied to c. The curly braces are
only to indicate how we write function application for
functions with this type, for all other purposes the types
{x : A} → B(x) and (x : A)→ B(x) are the same.

2.1.2 Pair Types
Given a type family B depending on a type A, we

can form the dependent pair type (also called dependent
sum type or sigma type)

(x : A)×B(x) or
∑
x:A

B(x).

We will use the former notation in this document. A term
of type (x : A)× B(x) is a pair consisting of an element
a : A and an element b : B(a). Given a : A and b : B(a),
we can form the term (a, b) : (x : A)×B(x), and we have
projections

p1 : (x : A)×B(x)→ A and p2 : (z : (x : A)×B(x))→ B(p1(z)).

15



We will sometimes write x.i for pi(x). There are beta
rules p1(a, b) ≡ a and p2(a, b) ≡ b and an eta rule stating
that for any z : (x : A)×B(x) we have z ≡ (p1z, p2z). In
Lean, there is no eta rule for dependent pair types, but
instead there is an induction principle, similar to those
of inductive types (see Section 2.1.4).

If B(x) does not depend on x, we write (x : A) ×
B simply as A × B. In this case we retrieve the usual
cartesian product of A and B.

Logically we can think of A× B as the conjunction
of A and B, as described above. Furthermore, we can
think of (x : A)×B(x) as a proof-relevant version of the
existential quantifier ∃(x : A).B(x). It is proof-relevant
in the sense that from a proof of (x : A) × B(x) we
can extract a witness a : A such that B(a) holds. In
Section 2.2.4 we will define an existential quantifier from
which the witness cannot be extracted.

Topologically, we think of A×B as the product space
of A and B. The map p1 : (x : A) × B(x) → A corre-
sponds to a fibration. A fibration is a map that has the ho-
motopy lifting property with respect to any space, which
is given by transport, to be defined in Section 2.2.1. Un-
der this interpretation, (x : A)× B(x) is the total space
of the fibration p1, and B(a) is the fiber of p1 at point
a. The type (x : A) → B(x) is the type of sections of
p1. These observations are usually summarized as “de-
pendent types correspond to fibrations.” We will often
call dependent functions sections.

16



2.1.3 Universes
In our discussions below we need one or more uni-

verses in our type theory. There are different styles of
universes in type theory [? ], we will describe the uni-
verses á la Russell. A universe U is a type that has types
as its terms. That is to say, if A : U , then A is a type. It
is closed under all type-forming operations. For example,
for pi-types this means that if A : U and for a : A we have
B(a) : U , then

(a : A)→ B(a) : U .

We can now interpret dependent types in U , such as B
above, as functions B : A→ U .

In the proofs in this document we can often get away
with assuming only a single universe. However, it is use-
ful to have the property that all types have a type them-
selves, and we cannot do that with a single universe U ,
because positing U : U is inconsistent [? ]. Instead, we
will assume that we have a tower of universes

U0 : U1 : U2 : · · ·

such that for every type A there is an i such that A : Ui.
In this case every dependent type can be interpreted as a
function A→ Ui for some i. As is customary, we usually
omit writing universe levels explicitly, and we will per-
form constructions polymorphic over all universes. For
example, if we write

id : {A : U} → A→ A,

we really mean that for any universe level i we have

idi : {A : Ui} → A→ A.

17



One rule that is sometimes assumed is universe cu-
mulativity, which states that if A : Ui, then A : Uj for
j ≥ i. This can be problematic, and lead to violation of
nice properties of the type theory, such as subject reduc-
tion or canonicity [? ]. In this document (and in Lean),
we do not assume universe cumulativity. Instead, using
inductive types (see Section 2.1.4) we can construct for
A : Ui a new type liftA : Uj for j ≥ i such that A ' liftA.

2.1.4 Inductive Types
Inductive types are types that are inductively gener-

ated by some constructors. A simple example is N, which
is inductively generated by 0 and the successor function
S :≡ λx. x+1. In this section we will discuss some induc-
tive types that we will need in this dissertation. We will
talk about the empty type, the unit type, the booleans,
the natural numbers and the sum type. The dependent
pair type (Section 2.1.2) is also an inductive type.

The empty type

The empty type 0 : U0 is a type without inhabitants.
There are no constructors, and we have as induction prin-
ciple that if P : 0→ Ui, then

ind0 : (x : 0)→ P (x).

This conveys that 0 indeed has no inhabitants, because if
we view P as a predicate, we can prove anything about all
inhabitants of 0. We can define negation ¬A :≡ A→ 0.

18



The unit type

The unit type 1 : U0 is a type with exactly one
inhabitant ? : 1. The induction principle states that if
P : 1→ Ui, then

ind1 : P (?)→ (x : 1)→ P (x).

This states that ? is the only inhabitant of 1, because
if we can prove something for ?, then it holds for all
inhabitants of 1. There is a computation rule

ind1(p, ?) ≡ p.

The booleans

The type of booleans 2 : U0 has exactly two inhab-
itants 12, 02 : 2. Its induction principle states that if
P : 2→ Ui, then

ind2 : P (12)→ P (02)→ (x : 2)→ P (x).

The computation rules are

ind2(p12 , p02 , 12) ≡ p12 and ind2(p12 , p02 , 02) ≡ p02 .

The natural numbers

A more interesting type is the type of natural num-
bers N : U0. It has a constructor 0 : N and a unary
constructor S : N → N, and it is freely generated by
these constructors. This means that if P : N → Ui and
if we have p0 : P (0) and pS : (k : N) → P (k) → P (S k),
then

indN(p0, pS) : (n : N)→ P (n).

19



If we view P as a predicate, this is the usual induction
principle for N: to prove something for all numbers we
need to prove it for 0 and we need to prove it for k + 1
assuming it holds for k, for an arbitrary k. However, this
induction principle also allows us to define (dependent)
functions from N. These functions satisfy the computa-
tion rules

indN(p0, pS, 0) ≡ p0 and indN(p0, pS, S n) ≡ pS(n, indN(p0, pS, n)).

Often, we will want to give a name f to indN(p0, pS), and
we will instead denote the recursive definition of f using
pattern matching notation:

f(0) :≡ p0 and f(S n) :≡ pS(n, f(n)).

For example, we can define addition and multiplication
+, · : N → N → N recursively (in the second argument)
as

n+ 0 :≡ n n · 0 :≡ 0
n+ (S m) :≡ S(n+m) n · (S m) :≡ n ·m+ n.

Note that n + 1 ≡ S n, and we will often write n + 1
instead of S n from now on.

The sum type

Given two types A and B, we can form the sum type
or coproduct A + B with constructors inl : A → A + B

and inr : B → A+B. The induction principle states that
for P : A + B → U with maps pinl : (a : A) → P (inl a)
and pinr : (b : B)→ P (inr b) we get a section

ind+(pinl, pinr) : (x : A+B)→ P (x)

20



with computation rules

ind+(pinl, pinr, inl(a)) ≡ pinl(a) and ind+(pinl, pinr, inr(b)) ≡ pinr(b)

Logically, the type A + B is the proof-relevant dis-
junction of A and B. It is proof-relevant in the sense
that a proof of A+ B is of the form inl a or inr b. There-
fore, a proof comes with a proof of either A or B. In
Section 2.2.4 we will see a disjunction that does not have
this property.

General Inductive Types

In Section 2.1.4 we saw various instances of induc-
tive types. Also the sigma-types from Section 2.1.2 (with-
out eta rule) are an instance of an inductive type. We
will now explain inductive types and families of inductive
types in general. For a more detailed description, see [?
, Section “Inductive Types”].

When defining an inductive type, we have to list its
constructors. For example, we could define the sum type
as follows. Given A B : U , we define

inductive A+B : U :=
• inl : A→ A+B;
• inr : B → A+B.

This defines the type A + B with constructors inl and
inr of the specified type. Each constructor must have as
target the inductive type currently being defined (in this
case A + B).5 Constructors can be recursive, meaning

5For higher inductive types (Section 2.2.6) the conclusion can
also be a (higher) path in the type currently being defined.

21



that the type being defined can occur in the domain of a
constructor. For example, here is the type of ω-branching
trees with leaves labeled by a type C.

inductive ω-treeC : U :=
• leaf : C → ω-treeC ;
• node : (N→ ω-treeC)→ ω-treeC .

A restriction on recursive constructors is that the induc-
tive type being defined can only occur in strictly positive
positions, that is as the target of one of the arguments of
the constructor.

Every inductive type has an induction principle. We
can algorithmically find the type of the induction princi-
ple from the constructors. The first argument of the in-
duction principle (often left implicit) is the motive, which
is an arbitrary type family over the inductive type being
defined, for ω-treeC this has type P : ω-treeC → U . Then
for every constructor c there is an argument that mimics
the type of c and has as target P (c(· · · )). For ω-treeC
these arguments have type pleaf : (c : C)→ P (leaf c) and

pnode : (f : N→ ω-treeC)→ ((n : N)→ P (f n))→ P (node f).

Note that for each recursive argument f of the construc-
tor we assume an induction hypothesis of type P (f(· · · )).
The induction principle then gives a section of P . So for
example we get

indω-treeC (pleaf , pnode) : (x : ω-treeC)→ P (x).

Finally, the computation rules states that if the induction
principle acts on a constructor, then it will reduce to the

22



argument corresponding to that constructor. For ω-treeC
this means (abbreviating s :≡ indω-treeC (pleaf , pnode))

s(leaf(c)) ≡ pleaf(c) and s(node(f)) ≡ pnode(f, λn. s(f n)),

where applying s to the recursive constructor leads to a
recursive call of s.

One important generalization of inductive types are
families of inductive types. In this case, a family of types
P is being defined simultaneously indexed over some type
I. In this case, constructors must have as target P (t)
where t is a term of type I formed by the (nonrecursive)
arguments of the constructor. An example of an induc-
tive family of types is the type of vectors in A of some
length n : N.

inductive vectorA : N→ U :=
• nil : vectorA(0);
• cons : {n : N} → A→ vectorA(n)→ vectorA(n+ 1).

Note that the parameter A remains fixed in the definition
of vectorA(n), while the index n : N is not: the construc-
tor cons constructs a vector of length n+ 1 from a vector
of length n. The induction principle can again be ex-
tracted algorithmically. It is important that the motive
also quantifies over all indices of the inductive family.
For vectors it states that given a motive

P : {n : N} → vectorA(n)→ U

and induction steps

pnil : P (nil)
pcons : (n : N)→ (a : A)→ (x : vectorA(n))→ P (x)→ P (cons(a, x)),

23



we get a section

indvector(pnil, pcons) : {n : N} → (x : vectorA(n))→ P (x)

with the expected computation rules.
A very important inductive family of types is the

identity type.6 This is a family of types with parameters
A : U and a : A and is defined as

inductive IdA(a,−) : A→ U :=
• refla : IdA(a, a).

We also denote the type IdA(a1, a2) by a1 =A a2 or a1 = a2
and refla by refl, 1a or 1. Its induction principle states
that for a family P : (a′ : A) → a = a′ → U and a term
prefl : P (a, 1a) we find a section

ind=(prefl) : (a′ : A)→ (p : a = a′)→ P (a′, p).

In words: we may assume that a path with free right
endpoint (that is, the right hand side of the equality is a
variable) is reflexivity.

Logically, the identity type corresponds to equality.
Under this interpretation, a term of type a1 = a2 is a
proof that a1 and a2 are equal. Homotopically, the iden-
tity type corresponds to the path space of A, and we will
explore this interpretation more in Section 2.2.1.

2.2 Homotopy Type Theory
We will now discuss in more detail the homotopical

interpretation of types, and the basic concepts of homo-
topy type theory.

6also called path type, identification type or equality type.

24



2.2.1 Paths
Elements of an identity type form paths in the space.

We can define the usual operations on paths.
Given a path p : a =A b, we can define the inverse

p−1 : b =A a. We can do this by path induction. Define
the family

P :≡ λ(x :A). λ(q : a =A x). x =A a : (x : A)→ a =A x→ U .

We now have refla : P (a, p) ≡ a =A a, and therefore we
get

p−1 :≡ ind=(refla, b, p) : b =A a.

The computation rule gives that refl−1
a ≡ refla.

We can explain the proof in words more intuitively.
Path induction states that we may assume that a path
with a free endpoint is reflexivity. Since p has a free
endpoint (b is a variable), we may assume that b ≡ a and
p ≡ refla. In this case, we can define

p−1 ≡ refl−1
a :≡ refla : a = a.

The map path inversion we have defined this way has
type

{a b : A} → a = b→ b = a.

We can also define path concatenation. Given p : a =A b

and q : b =A c, we define p · q : a =A c again by path
induction. We will only give the intuitive argument and
leave the formal proof to the reader. Since q has free
endpoint c, we may assume that c ≡ b and q ≡ reflb. In
this case, we define p · reflb :≡ p : a = b.

25



We can also define higher paths. For example, given
p : a = b and q : b = c and r : c = d, we have a path

p · (q · r) = (p · q) · r,

which is the associativity of path concatenation. We can
prove this by path induction on r: if r is reflexivity, then
both sides reduce to p · q.

By using path induction, we can also prove the fol-
lowing equalities:

p · 1 = p p · p−1 = 1
1 · p = p p−1 · p = 1.

It is trickier to prove the Eckmann-Hilton property of
equality, which states that given a : A and p, q : refla =
refla, we have p · q = q · p. The problem is that cannot
apply path induction to p or q directly. We omit the
proof here and refer to [? , Theorem 2.1.6].

Given a map f : A → B, we can prove that f

respects paths. Given a path p : a =A a′, we define
apf (p) : f(a) =B f(b) by path induction: for reflexivity
we define apf (refla) :≡ reflf(a). We will sometimes abuse
notation and write f(p) for apf (p). From a logical per-
spective this just states that functions respect equality,
but from a homotopical perspective, this states that func-
tions respect paths, which is in line with our intuition
that all functions are continuous in HoTT.

We can compute what ap does when our map is the
identity map, a constant map or a composition of maps:

apidA(p) = p ap0b(p) = reflb apg◦f (p) = apg(apf (p)).

26



All three of these properties are easily proven by path
induction. Also, we can compute ap when we apply it to
inverses or concatenations of paths:

apf (p · q) = apf (p) · apf (q) apf (p−1) = (apf (p))−1.

Given a dependent type P : A → U and a path p :
a =A a

′, we can define the transport function transportP (p) :
P (a) → P (a′). We define it by path induction; for re-
flexivity we define transportP (refla) :≡ idP (a). When P is
known from context we will write p∗(b) for transportP (p, b).

By path induction we can prove basic equalities about
transports. We have

transportP (p · q, x) = transportP (q, transportP (p, x))
transportλa.B(p, x) = x

transportP◦f (p, x) = transportP (apf (p), x)
fa′(transportP (p, x)) = transportQ(p, fa(x)) for f : (a : A)→ P (a)→ Q(a).

2.2.2 Equivalences
In this section we talk about maps between types

that have an inverse in a suitable way. Before we can
give the definition, we need to define homotopy.

Given two dependent maps f, g : (a : A) → B(a), a
homotopy h : f ∼ g is a proof that f and g are pointwise
equal:

(f ∼ g) :≡ (a : A)→ f(a) =B(a) g(a).

Recall that all maps are considered continuous, so this
actually gives a continuous deformation of f to g, which
is exactly what a homotopy is in topology.

27



Definition 2.2.1. Suppose given a function f : A→ B.

• A left-inverse of f is an inhabitant of (g : B →
A)× g ◦ f ∼ idA.

• Similarly, a right-inverse of f is an inhabitant of
(h : B → A)× f ◦ h ∼ idB.

• We say that f is an equivalence or isequiv(f) if f
has both a left and a right inverse. We will denote
its left-inverse by f−1. We can then show that f−1

is also a right inverse of f .

• The type of equivalences between A and B is (A '
B) :≡ (f : A → B) → isequiv(f). Given an ele-
ment f : A ' B, we will also use f to denote the
underlying map A→ B.

It is easy to show that the identity map idA : A ' A

is an equivalence. Moreover, if g : B → C and f : A →
B are both equivalences, then g ◦ f and f−1 are also
equivalences. This shows that equivalences are reflexive,
symmetric and transitive.

A very important property is that any two inhab-
itants of isequiv(f) are equal: if p, q : isequiv(f), then
p = q. We will not prove this here, but it is shown in [?
, Theorem 4.3.2]. This property is the reason that we
define the notion of equivalences this way. If we would
define isequiv(f) by requiring a map that is both a left
and a right inverse of f , then this property would not
hold.

Given two equivalences f, f ′ : A ' B, it does not
matter whether we compare them as functions or equiv-

28



alences:

(f =A'B f
′) ' (f =A→B f

′) ' (f ∼ f ′).

By path induction we also get a map (A =U B) →
(A ' B), because if the path p : A = B is reflexivity, we
can just take idA : A ' A as our equivalence. In plain
Martin Löf type theory one cannot characterize what the
type A = B is. This is where the univalence axiom comes
in. The univalence axiom states that the map

(A = B)→ (A ' B)

is an equivalence. In particular this means that we get a
map in the other direction: given an equivalence e : A '
B, we get an equality ua(e) : A = B.

2.2.3 More on paths
In this section we will discuss dependent paths, or

pathovers; higher paths, such as squares and cubes; and
paths in type formers.

Pathovers

We will often need to relate elements in two different
fibers of a dependent type. Suppose we have a family
P : A→ U with x : P (a) and x′ : P (a′). If we have a path
p : a = a′, we can form the type x =P

p x′ of dependent
paths or pathovers over p. There are four equivalent ways
to define this:

(i) We can define (x =P
p x

′) :≡ (transportP (p, x) = x′)

29



(ii) We can define (x =P
p x

′) :≡ (x = transportP (p−1, x′))

(iii) We can define (x =P
p x′) by path induction on p.

If p :≡ refla, we define (x =P
p x

′) ≡ (x =P
refla x

′) :≡
(x =P (a) x

′).

(iv) We can define (x =P
p x′) by a family of inductive

types. For fixed A : U and P : A → U and a : A
and x : P (a) we have the following family:

inductive x =P
(−) (−) : {a′ : A} → a = a′ →

P (a′)→ U :=
• refl : x =P

refla x.

It does not matter which of these definitions we pick,
because we can prove that all of them are equivalent.7

We have the following equivalences between pathovers:
(x =λa.B

p x′) ' (x =B x
′) (x =P◦f

p x′) ' (x =P
apf (p) x

′).

We can do operations on pathovers, similar to the
operations on paths. We have concatenation and inver-
sion, and we will abuse notation and denote them with
the same notation.

(−) · (−) : x1 =P
p x2 → x2 =P

q x3 → x1 =P
p·q x3

(−)−1 : x1 =P
p x2 → x2 =P

p−1 x1.

We have a dependent version of ap. Given a dependent
map f : (a : A)→ P (a), we get

apdf : (p : a = a′)→ f(a) =P
p f(a′).

7In Lean, we chose option (iv). Option (i) would probably be
slightly more convenient to work with, because then this charac-
terization becomes a definitional equality. In practice it will not
matter much, though.

30



A variant to apd is the following. Given f : A → B, a
family P : B → U and a section g : (a : A) → P (f(a)),
we define

ãpdg : (p : a = a′)→ g(a) =P
apf (p) g(a′). (2.2.2)

The difference between apd and ãpd is over which path
they lie.

Furthermore, if we have a map f : A → B and two
families P : A→ U and Q : B → U and a fiberwise map
g : (a : A) → P (a) → Q(f(a)), then we get a fiberwise
version of ap:

apog : x =P
p x

′ → ga(x) =Q
apf (p) ga′(x′). (2.2.3)

Squares

For higher paths, it is convenient to define a separate
notion of a square in a type:

a00 a20

a02 a22

p10

p01
p12

p21

Suppose given four paths as in the diagram above, that
is

p10 : a00 = a20 p01 : a00 = a02

p12 : a02 = a22 p21 : a20 = a22.

We have a type of squares square(p10, p12, p01, p21), which
we can define in either of the two following equivalent
ways

31



(i) We can define square(p10, p12, p01, p21) :≡ (p10 ·p21 =
p01 · p12).

(ii) square(p10, p12, p01, p21) is defined as an inductive
family of types. For a fixed a00 : A we define the
family

inductive square(−,−,−,−) : {a20 a02 a22 :
A} → a00 = a20 → a02 = a22 → a00 = a02 →
a20 = a22 → U :=
• refl : square(refla00 , refla00 , refla00 , refla00).

We will usually write squares using diagrams as above.
There are various operations on squares. For example,
we can horizontally concatenate them. If we can fill each
of the individual squares below, we can fill the outer rect-
angle (which has as top p10 · p30 and as bottom p12 · p32).

a00

a02

a20

a22

a40

a42

p10

p01
p12

p30

p21
p32

p41

We can also vertically concatenate squares, and horizon-
tally or vertically invert squares.

Given a homotopy h : f ∼ g between nondependent
functions f, g : A → B and a path p : a =A a′, we get
the following naturality square.

32



f(a) g(a)

f(a′) g(a′)

h(a)

apf (p)
h(a′)

apg(p)

Squareovers and cubes

Going up further, we have the type of squareovers. A
squareover is a square in a dependent type over a square.
Suppose that we have a dependent type P : A → U , a
square s in A and a dependent path over each of the sides
of the square, as in the following diagram.

x00 x20

x02 x22

q10

q01
q12

q21

a00 a20

a02 a22

s

p10

p01
p12

p21

We have the type of squareovers or dependent squares,
which fill the top square and lie over the bottom square.
We can again define this using multiple methods, but
the most convenient method here is to define it as an
inductive family. We take as parameters the type A, the
family P and the points a00 and x00 and let all the other

33



arguments be indices. We have a “reflexivity squareover”
when the square s is the reflexivity square and each of
the four pathovers are reflexivity pathovers.

We can also define a type of cubes. Given six squares
in a type with twelve paths as sides, fitting together in a
cube, we can define the type of fillers of the cube. This
is again done using a family of inductive types, where
we give a cube filler when all the six sides are reflexiv-
ity squares. Of course, we could continue by defining
cubeovers and 4-cubes, but we will not need them in this
dissertation.

Paths in type formers
In each of the type formers of Section 2.1 we can

compute what the paths in that type are, and what the
operations of paths are in that type.

As a simple example, consider the cartesian product
type A × B. A path in the cartesian product is just a
pair of paths.

(x =A×B y) ' (p1x =A p1y)× (p2x =B p2y)

In particular, given paths r : p1x = p1y and s : p2x = p2y,
we get a path x = y, which we will denote (r, s). Given
maps f : A → A′ and g : B → B′, we get the map
f × g : A×B → A′ ×B′ and we can compute

apf×g(r, s) = (apf (r), apg(s))

. Given families P,Q : A → U , we can compute trans-
port:

transportλa. P (a)×Q(a)(p, (x, y)) = (transportP (p, x), transportQ(p, y))

34



Pathovers in a family of cartesian products are also pairs
of pathovers:

(x, y) =λa. P (a)×Q(a)
p (x′, y′) ' (x =P

p x
′)× (y =Q

p y
′).

In sigma-types the relations are a bit more difficult,
since the second component depends on the first. In the
type (a : A)×B(a) paths are pairs of a path and a path
over that path:

(x =(a:A)×B(a) y) ' (r : p1x =A p1y)× (p2x =B
r p2y)

We will also denote in this case the map from right to
left by (−,−). Given a map f : A → A′ and a fiberwise
map g : (a : A) → B(a) → B′(f(a)), we get a functorial
action of the sigma type: f ×g : ((a : A)×B(a))→ ((a′ :
A′)×B(a′)). In this case, we can compute

apf×g(r, s) = (apf (r), apog(s)),

where apo is defined in (2.2.3). We leave the rule for
transports as an exercise to the reader, but the rule for
pathovers in a family of sigma-types is the following. For
B : A→ U and C : (a : A)→ B(a)→ U we get:8

((a, b) =λa. (b:B(a))×C(a,b)
p (a′, b′)) ' (q : a =P

p a
′)×(y =λ(x : (a:A)×B(a)). Q(p1x,p2x)

(p,q) y′).

For dependent function types the situation is a bit
more complicated. Given f, g : (a : A) → B(a), by path
induction we get a map

happly : (f = g)→ f ∼ g.

8We could define a new notion “path over a pathover,” but the
rule given here suffices for all the cases we considered.

35



However, we cannot show in plain Martin-Löf type theory
that this map gives rise to an equivalence. In homotopy
type theory we can use the univalence axiom (see Sec-
tion 2.2.2) to show that happly is an equivalence. We
skip the proof here, but refer the reader to [? , Section
4.9]. Using univalence we can also prove the other prop-
erties. The general rule for pathovers in a dependent
function type is complicated, but two important special
cases are the following. In the first case, the domain does
not depend on the path. We have types A and B and a
family C : A→ B → U and then we can prove:

(f =λa. (b:B)→C(a,b)
p g) ' (b : B)→ f(b) =C(−,b)

p g(b).

The second case is for nondependent functions. Given a
type A and two families B,C : A→ U , we have

(f =λa.B(a)→C(a)
p g) ' (b : B(a))→ f(b) =C

p g(p∗(b)).

We characterized paths in the universe in Section 2.2.2
using the univalence axiom. We will not need to do much
path algebra in inductive types, except for the identity
type, pathover type and square type. A pathover in a
family of identity types is a square. Suppose given types
A and B and functions f, g : A → B, a path p : a =A a

′

and paths q : f(a) = g(a) and r : f(a′) = g(a′). Then
the pathover type becomes equivalent to the square type
shown below.

(q =λa. f(a)=g(a)
p r) '

f(a) g(a)

f(a′) g(a′)

q

apf (p)
r

apg(p)

36



We also sometimes encounter a pathover in a depen-
dent family of pathovers. In that case we get a square-
over. Suppose we are given functions f, g : A → B, and
a homotopy h : f ∼ g, a dependent family C : B → U
and sections c : (a : A) → C(f(a)) and c′ : (a : A) →
C(g(a)). We want to characterize a pathover in the fam-
ily P :≡ λa. c(a) =C

h(a) c
′(a) : A→ U . If we are also given

a path p : a =A a
′ and two pathovers q : c(a) =C

h(a) c
′(a)

and q′ : c(a′) =C
h(a′) c

′(a′), then the pathover q =P
p q′ is

equivalent to the following squareover, where ãpd is de-
fined in (2.2.2), and the bottom square is a naturality
square.

c(a) c′(a)

c(a′) c′(a′)

q

ãpdb(p)
q′

ãpdb′(p)

f(a) g(a)

f(a′) g(a′)

nat.

h(a)

apf (p)

h(a′)

apg(p)

Lastly, we will mention that a pathover in a family of
squares is a cube, but we will not explain the details
here.

37



2.2.4 Truncated Types
In HoTT we can define iterated path spaces in any

type. In certain types, if we iterate path spaces enough
times, these path spaces do not contain any information.
These types are called truncated. The notion of an n-
truncated type, was introduced in 2009 by Vladimir Vo-
evodsky under the name “a type of h-level n+ 2.”

We define the notion that A is n-truncated, or that
A is an n-type or is-n-type(A) recursively for n ≥ −2. We
say that a type A is (−2)-truncated or contractible if it
has exactly one inhabitant, i.e. if we can prove

(a0 : A)× (a : A)→ a = a0.

A type A is (n + 1)-truncated if for all a a′ : A the type
a =A a

′ is n-truncated.
We can show that 1 is contractible and that every

contractible type is equivalent to 1.
The (−1)-truncated types are called mere proposi-

tions or propositions for short. A type A is a proposition
precisely when any two of its inhabitants are equal, i.e.
if we can prove

(a a′ : A)→ a = a′.

We call these types propositions because these types cor-
respond to truth values, and do not contain any further
information. In particular, if a proposition is inhabited,
then it is contractible. It is easy to see that 0 and 1 are
mere propositions, and in Section 2.2.2 we saw that the
statement isequiv(f) is a mere proposition.

38



One level up, the 0-types are called sets. These are
the types for which uniqueness of identity proofs holds.
Examples of sets are N and 2.

On the next level we have the 1-types or groupoids.
Below we list some properties of truncated types, see [?
, Section 7.1] for their proofs.

Lemma 2.2.4.

• If A is n-truncated, then A is m-truncated for all
m ≥ n.

• If A is n-truncated and A ' B, then B is n-
truncated.

• If A and B are n-truncated types, then A×B and
A ' B are n-truncated. If n ≥ 0, then A + B is
also n-truncated.

• If B : A→ U is a family of n-truncated types (i.e.
(a : A) → is-n-type(B(a))), then (a : A) → B(a)
is n-truncated. If moreover A is also n-truncated,
then (a : A)×B(a) is also n-truncated.

• Given a0 : A, the type (a : A) × (a0 = a) is con-
tractible.

• The type is-n-typeA is a mere proposition.

We define the subuniverse of n-types as U≤n :≡ (X :
U) × is-n-type(X). For X : U≤n we will also write X for
the underlying type of X. We write Prop :≡ U≤−1 and
Set :≡ U≤0.

39



We can do set-level mathematics in the subuniverse
of sets. For example, we can define a group to be a set
with operations satisfying the following axiomatization:9

Group :≡ (G : Set)× (m : G→ G→ G)× (i : G→ G)× (e : G)× ((x y z : G)→
m(x,m(y, z)) = m(m(x, y), z)×m(x, e) = x×m(x, i(x)) = e).

A group G is abelian if it moreover satisfies m(x, y) =
m(y, x) for all x, y : G. This gives the usual notion of
groups, and we can perform all basic group theory in
this setting.

Truncations

We can turn every type A into an n-type ‖A‖n in a
universal way, which is called the n-truncation of A. It
comes with a map |−|n : A→ ‖A‖n and has the following
induction principle. Suppose given P : ‖A‖n → U such
that P (x) is n-truncated for all x : ‖A‖n. If we are given
a dependent map f : (a : A)→ P (|a|n), we get a section

ind‖−‖(f) : (x : ‖A‖n)→ P (x)

such that ind‖−‖(f, |a|n) ≡ f(a).
We will now state some properties of the n-truncation,

for the proofs we refer to [? , Section 7.3].

Lemma 2.2.5.

• The truncation is functorial. Given f : A→ B, we
get a map ‖f‖n : ‖A‖n → ‖B‖n. This map respects

9From these equalities the fact that e is a left-identity and i is
a left-inverse can be derived.

40



composition and identities: ‖g ◦ f‖n ∼ ‖g‖n ◦ ‖f‖n
and ‖ idA ‖n ∼ id‖A‖n.

• A is an n-type iff |−|n : A → ‖A‖n is an equiva-
lence.

• The equality type in the truncation is truncated
equality, but shifted:

(|a|n+1 =‖A‖n+1= |a′|n+1) ' ‖a =A a
′‖n.

• Truncating twice is the same as truncating once:

‖‖A‖n‖k ' ‖A‖min(n,k).

In particular the propositional truncation ‖A‖ :≡
‖A‖−1 of A is a proposition stating that A is merely in-
habited [? ]. We can use it to define proof irrelevant
versions of the disjunction or existential quantifier. We
have the mere disjunction

(P ∨Q) :≡ ‖P +Q‖

and the mere existential

(∃(x : A).P (x)) :≡ ‖(x : A)× P (x)‖.

We say that there merely exists x : A such that P (x)
holds if ∃(x : A).P (x) is inhabited, to contrast with con-
structing an element in the untrucated dependent pair
type. If we construct an element of (x : A) × P (x), we
will sometimes say that there purely exists an x such that
P (x) holds, but often we will drop the adverb purely.

41



Connected types

A type is truncated if the type contains no interest-
ing information in a high enough dimension. Dually, a
type is connected if it contains no interesting information
in a low enough dimension.

We say that a type A is n-connected for n ≥ −2
if ‖A‖n is contractible. From the definition we see that
every type is (−2)-connected. A type is (−1)-connected
precisely when it is merely inhabited. A type is called 0-
connected when A has exactly one connected component.
A 1-connected type is called simply connected.

Fibers

We can extend the notion of truncated types and
connected types to functions. Given a function f : A →
B and a point b : B, we define the fiber of f at b to be

fibf (b) :≡ (a : A)× f(a) = b.

The fiber of the projection p1 : ((a : A)×B(a))→ A at a :
A is equivalent to B(a), which explains the terminology
that B(a) is the fiber of B over a.

We say that a function f : A → B is n-truncated
(n-connected) when for all b : B the type fibf (b) is n-
truncated (n-connected). The function f is (−2)-truncated
precisely when it is an equivalence. The function f is
(−1)-truncated, or an embedding, if for all a a′ : A the
map apf : a =A a′ → f(a) =B f(a′) is an equivalence.
A map f : A → B between sets is an embedding iff it is
injective, i.e. if we have a map f(a) = f(a′)→ a = a′ for
all a a′ : A. On the other hand, a (−1)-connected map

42



is called a surjection, which means that for every b : B
there merely exists an a : A such that f(a) = b.

Every map can be factorized as an n-connected map
followed by an n-truncated map in a unique way, which
means that these classes form an orthogonal factorization
system [? ].

Similar to the universe of n-truncated types, we have
a universe of n-connected types:

U>n :≡ (A : U)× is-n-connected(A).

2.2.5 Pointed Types
A lot of homotopy theory is done in the (∞, 1)-

category of pointed types where the morphisms are maps
that preserve the basepoints of the types. Below are the
basic definitions for pointed types.

Definition 2.2.6.

(i) A type A is pointed if A has a distinguished base-
point a0 : A. For example, 1 is pointed by ? and
2 is pointed with 02. We will also write S0 for the
pointed type 2. A × B is pointed if both A and
B are pointed,10 (a : A) → B(a) is pointed if B
is a family of pointed types, and (a : A) × B(a) is
pointed if A is pointed and B(a0) is pointed.

10More formally, we have to specify the basepoint of A × B,
because being pointed is structure on a type, not a property of the
type, but there is only one choice of basepoint in this example and
other examples where we leave the basepoint implicit.

43



(ii) The type of pointed types is U∗ :≡ (A : U) × A.
Given a pointed type A : U∗, we will also write A
for its underlying type.

(iii) Given two pointed types A,B : U∗, a pointed map
f : A→∗ B is a pair consisting of a map f : A→ B

and a path f0 stating that f preserves the base-
point, that is f0 : f(a0) = b0. The type A→∗ B is
pointed with basepoint 0 ≡ 0A,B :≡ (λa. b0, reflb0).

(iv) We have an identity pointed map id ≡ idA : A→∗ A

defined as (λx. x, refla0) and if g : B →∗ C and
f : A →∗ B we have a composite g ◦ f : A →∗ C

defined as (λx. g(f(x)), apg(f0) · g0).

(v) More generally, Given a pointed type A : U∗ and
a family of types B : A → U with a basepoint
b0 : B(a0), a pointed dependent map f : (a : A)→∗

B(a) is a pair consisting of a dependent map f :
(a : A) → B(a) and a path f0 : f(a0) = b0. If
we require that B is a family of pointed types, i.e.
B : A→ U∗, then (a : A)→∗ B(a) is pointed with
basepoint (λa. b0(a), reflb0(a0)).

(vi) Given two pointed dependent maps f, g : (a : A)→∗

B(a), a pointed homotopy h : f ∼∗ g is a pointed
dependent map (a : A) →∗ f(a) = g(a). This
is well-defined, since the type f(a0) = g(a0) is
pointed by f0 · g−1

0 . Expanding the definition, this
means that h is a pair of a homotopy h : f ∼ g

and a 2-path stating that h relates the basepoint-
preserving paths of f and g. This means that
we have h0 : h(a0) = f0 · g−1

0 , or equivalently,

44



h0 : h(a0) · g0 = f0. We say that a diagram of
pointed types commutes if there are pointed ho-
motopies between the corresponding composites of
pointed maps.

(vii) A pointed map e : A→∗ B is a pointed equivalence
if it has a left-inverse and a right-inverse. That is,
there is ` : B →∗ A such that ` ◦ e ∼∗ idA and r :
B →∗ A such that e◦r ∼∗ idB. The type of pointed
equivalences between A and B is denoted A '∗

B. The identity map is a pointed equivalence and
pointed equivalences are closed under composition.

(viii) Given A : U∗, we define its loop space ΩA : U∗ :≡
(a0 = a0, refla0). We define the iterated loop space
ΩnA by iteration as Ω0A :≡ A and Ωn+1A :≡
Ω(ΩnA).

(ix) We define the n-th homotopy group of A as the set-
truncation of the iterated loop space, i.e. πn(A) :≡
‖ΩnA‖0. This is a group for n ≥ 1 that is abelian
for n ≥ 2.

(x) Given a pointed map f : A →∗ B, we define the
pointed fiber of f fibf : U∗ as fibf (b0) ≡ (x : A) ×
f(a) = b0 with basepoint (a0, f0). There is a pointed
map p1 : fibf →∗ A defined as (λx. p1(x), refla0).

Here are some basic properties of pointed types. We
omit the proofs.

Lemma 2.2.7.

45



(i) Suppose given a pointed map f : A→∗ B. The type
of proofs that f is an equivalence is equivalent to the
type that f is a pointed equivalence. In particular,
being a pointed equivalence is a property. Also, we
can define a pointed equivalence X '∗ Y by giving
a map e : X → Y that is both an equivalence and
pointed.

(ii) Suppose given A,B : U∗. Univalence implies uni-
valence for pointed types: the canonical map (A =
B)→ (A '∗ B) is an equivalence.

(iii) Suppose given pointed maps f, g : (a : A)→∗ B(a).
Function extensionality implies function extension-
ality for pointed maps: the canonical map (f =
g)→ (f ∼∗ g) is an equivalence.

(iv) We have the usual categorical laws:

f ◦ id ∼∗ f id ◦f ∼∗ f (h ◦ g) ◦ f ∼∗ h ◦ (g ◦ f)
f ◦ 0 ∼∗ 0 0 ◦ f ∼∗ 0

The two homotopies showing 0 ◦ id ∼∗ 0 are equal.
This is also true for the two homotopies of id ◦0 ∼∗

0 and of id ◦ id ∼∗ id and of 0 ◦ 0 ∼∗ 0.

(v) We can form iterated pointed maps (A →∗ B →∗

C) :≡ (A→∗ (B →∗ C)). To show that such a map
preserves the basepoint, we need to give an equality
between pointed maps, or equivalently, we can give
a pointed homotopy between pointed maps. For ex-
ample, the above homotopies involving 0 imply that
we have precomposition and postcomposition maps.

46



For f : A →∗ B we have a pointed map (−) ◦ f :
(B →∗ C)→∗ A→∗ C and for g : B →∗ C we have
a pointed map g ◦ (−) : (A →∗ B) →∗ A →∗ C.
We will also write f → C resp. A → g for these
maps. Precomposition and postcomposition com-
mute, which means that the following square com-
mutes.

(A→∗ B) (A→∗ B)

(A′ →∗ B) (A′ →∗ B′)

g ◦ (−)

(−) ◦ f

g ◦ (−)
(−) ◦ f

Moreover, if f or g are constant, then these maps
are pointed homotopic to constant maps, which gives
a pointed map

(−) ◦ (−) : (B →∗ C)→∗ (A→∗ B)→∗ A→∗ C.

(vi) There are also dependent versions of these composi-
tion maps. In particular, if g : (a : A)→ B(a)→∗

C(a), then we have a map

g ◦ (−) : ((a : A)→∗ B(a))→∗ (a : A)→∗ C(a).

We have an equivalence

fibg◦(−) '∗ ((a : A)→∗ fibga).

(vii) Ω and Ωn are pointed functors. For Ω this means
that given a pointed map f : A →∗ B, we can

47



define Ωf : ΩA →∗ ΩB, with pointed homotopies
Ω(g ◦ f) ∼∗ Ωg ◦ Ωf and Ω id ∼∗ id and Ω1 '∗ 1.
This also implies that Ω0 ∼∗ 0 and that if e : A '∗

B then Ωe : ΩA '∗ ΩB.

(viii) There is a pointed version of function extensionality
for pointed types. If B is a family of pointed types,
we have a pointed equivalence

eB : Ω((a : A)→∗ B(a)) '∗ ((a : A)→∗ ΩB(a)).

This equivalence is natural in B. This means that
given a fiberwise pointed map f : (a : A)→ B(a)→∗

C(a), the following square commutes.

Ω((a : A)→∗ B(a)) ((a : A)→∗ ΩB(a))

Ω((a : A)→∗ C(a)) ((a : A)→∗ ΩC(a))

eB

Ω(f ◦ (−))
eC

Ωf ◦ (−)

(ix) The fiber of a pointed map is functorial. This means
that given a commuting square, we get a pointed
map from the fiber of the top map to the fiber of the
bottom map.

fibf A B

fibf ′ A′ B′

p1 f

g

p1 f ′
h

48



Moreover, if the left and the right sides of the squares
are equivalences, then the functorial action is an
equivalence. Lastly, p1 is natural, which means that
the left square commutes.

(x) Given a pointed map f : A→∗ B, we have a equiv-
alence Ω fibf '∗ fibΩf that is natural in f . This
means that if we have a commuting square with top
f and bottom f ′, then the following square com-
mutes (the left and the right side come from the
functorial action of fib).

Ω fibf fibΩf

Ω fibf ′ fibΩf ′

∼

∼

(xi) We have a pointed equivalence (S0 →∗ X) '∗ X

natural in X.

(xii) A pointed type A is n-connected iff πk(A) is triv-
ial (contractible) for all k ≤ n. If a type A is n-
truncated, then πk(A) is trivial for k > n (however,
the converse is not true in general).

2.2.6 Higher Inductive Types
Higher inductive types are a generalization of induc-

tive types where we specify not only the generating points
in the type by constructors, but also the generating paths
and higher paths. The idea is that the type together with

49



its (higher) path spaces are freely generated by these con-
structors.

A simple example is the interval. The interval I is
generated by two points 0, 1 : I and a path seg : 0 =
1. Using a syntax similar to that of inductive types, we
could write

HIT I : U :=
• 0, 1 : I;
• seg : 0 =I 1.

Note that this is not an inductive type, since the last con-
structor does not specify an element in I, but an element
in the path space of I. We get an induction principle
for higher inductive types, similar to the induction prin-
ciple for inductive types. We first give a special case, the
nondependent induction principle, also called the recur-
sion principle. For the interval this states the following.
Given a type X, if we have points x0 x1 : X and a path
p : x0 =X x1, then we get a map recI(x0, x1, p) : I → X.
On the points this has the expected computation rules:

recI(x0, x1, p, 0) ≡ x0 and recI(x0, x1, p, 1) ≡ x1.

We want a similar computation rule on paths. We can ap-
ply the induction principle to seg using ap. The resulting
computation rule is

aprecI(x0,x1,p)(seg) = p.

Note that for this case we postulate a member of the
identity type instead of making this a definitional equal-
ity. There are various reasons for this. Firstly, in this
type theory, there is no justification for this equality to

50



be definitional. There are various ways to define ap, and
there is no good reason for the computation rules to favor
this definition. Secondly, in the early proof assistants for
HoTT there was no support for definitional computation
rules on path constructors, but there was a trick to get it
for the point constructors [? ]. In fact, calling this rule
a “computation rule” is not quite accurate, since there is
no computation going on. We will still keep using this
terminology, so that we have the same terminology as
for inductive types. In the cubical type theories men-
tioned in the introduction we can make these terms re-
duce judgmentally, making them convenient for working
with higher inductive types.

The induction principle for the interval is the follow-
ing. Suppose given a family P : I → U with elements
x0 : P (0) and x1 : P (1). We need to relate x0 and x1
in some way, but we cannot ask that they are equal,
since they live in different types. Instead, we require a
pathover p : x0 =P

seg x1. In this case we get a dependent
map indI(x0, x1, p) : (i : I) → P (i) with computation
rules on points

indI(x0, x1, p, 0) ≡ x0 and indI(x0, x1, p, 1) ≡ x1.

For the computation rule on paths, we need to use apd
to apply the induction principle to seg, and we get

apdindI(x0,x1,p)(seg) = p.

A more interesting example of a higher inductive
type is the (graph) quotient which we will call a quotient
in this dissertation. Given A : U and R : A → A → U ,
the quotient is the following higher inductive type.

51



HIT quotientA(R) :=
• i : A→ quotientA(R);
• glue : (a a′ : A)→ R(a, a′)→ i(a) = i(a′).

We will sometimes use the notation [−]0 for i and [−]1
for glue.

A very similar higher inductive type is the homotopy
pushout, or pushout for short. Given two maps f : A→ B

and g : A→ C, their pushout is the following HIT.
HIT pushout(f, g) :=
• inl : B → pushout(f, g)
• inr : C → pushout(f, g)
• glue : (a : A)→ inl(f(a)) = inr(g(a))

We denote pushout(f, g) by B +A C if f and g are clear
from the context. In this section, we will define other
higher inductive types in terms of the pushout. However,
we could also start with the quotient, by the following
lemma.

Lemma 2.2.8. The pushout and quotient are interdefin-
able in MLTT.

证明. We will only give the definitions of the pushout
and the quotient in terms of the other. Showing that
these definitions are correct is easy, and we omit it here.

If we have quotients, we can define the pushout of
f : A → B and g : B → C as the quotient of B + C

under the relation R : B + C → B + C → U , which is
inductively generated by mk : (a : A)→ R(f(a), g(a)).

On the other hand, if we have pushouts, we can de-
fine the quotient of A under R as follows. Let T :≡ (a a′ :
A)×R(a, a′) be the total space of R. Then the quotient

52



of A under R is the pushout of f :≡ 〈π1, π2〉 : T +T → A

and g :≡ 〈id, id〉 : T + T → T .

Many higher inductive types can be defined in terms
of the homotopy pushout (or equivalently, the quotient):

• The cofiber of a map f : A → B is defined as
Cf :≡ B +A 1. The maps are f and !.

• The suspension ΣA of type A is defined as ΣA :≡
1 +A 1, i.e. as the cofiber of the map A→ 1. The
points are called N and S and glue is called merid.

• The wedge sum of a family of pointed types A :
I → U∗ is defined as the cofiber of the map I →
(i : I) × A(i), which sends i to the pair (i, ptA(i)).
The binary wedge A∨B of two pointed types A B :
U∗ can equivalently be described as the pushout of
A+1 B where the maps come from the basepoints
of A and B.

• The smash product A∧B of A and B can be defined
as the cofiber of the map A ∨ B → A × B, which
sends inl(a) to (a, b0) and inr(b) to (a0, b) and glue(?)
to refl(a0,b0). We will discuss the smash product
in Section 4.3.

• The n-sphere Sn is defined inductively for n ≥ 0:
S0 :≡ 2 and Sn+1 :≡ ΣSn. The n-sphere is pointed
with point N for n ≥ 1 and with 02 for n = 0.
We could also start counting at n = −1, defining
S−1 = 0, but we often only want to consider the
pointed spheres.

53



Another higher inductive type that we will study is
the sequential colimit or colimit for short. This is the
following HIT for A : N → U and f : (n : N) → A(n) →
A(n+ 1):

HIT colim(A, f) :=
• ι : (n : N)→ A(n)→ colim(A, f);
• κ : (n : N)→ (a : A(n))→ in+1(fn(a)) = in(a).

We can define colim(A, f) using quotients, namely
as quotient(B,R) where B = (n : N) × A(n) is the total
space of A and R : B → B → U is inductively generated
by mk : (n : N) → (a : A(n)) → R(fn(a), a). We will
discuss the colimit more in Section 3.3

We will use the following properties of these higher
inductive types. For the proof we refer to [? , Chapter
8]

Lemma 2.2.9.

• If A is n-connected, then ΣA is (n+ 1)-connected.

• The suspension is left-adjoint to the loop space: Σ a
Ω. That means that for any two pointed types A
and B there is a pointed equivalence

(ΣA→∗ B) '∗ (A→∗ ΩB)

that is natural in A and B.

• We have the following equivalence: ΩS1 ' Z. There-
fore S1 is1-truncated and π1(S1) ' Z.

In particular, by the above lemma we know that Sn
is (n− 1)-connected, and hence that πk(Sn) is trivial for
k < n.

54



Another higher inductive type is the torus, which is
the following higher inductive type

HIT T 2 :=
• ? : T 2;
• `1 `2 : ? = ?;
• `1 · `2 = `2 · `1.

The last constructor of the torus is a 2-path constructor.
In general, HITs can have as constructor any higher path.
We say that a HIT is an n-HIT if its highest path con-
structor has dimension n. So the torus is a 2-HIT and
all the other HITs we have seen are 1-HITs.

Higher inductive types can also have recursive con-
structors. If a higher inductive type has at least one
recursive constructor, we will call it a recursive HIT. For
example, we can encode the propositional truncation as
a HIT with a recursive path constructor:

HIT ‖A‖ :=
• |−| : A→ ‖A‖;
• (x1 x2 : ‖A‖)→ x1 = x2.

Higher truncations can also be encoded using HITs [? ,
Section 7.3].

2.3 Lean
Lean [? ] is an interactive theorem prover that

is mainly developed at Microsoft Research and Carnegie
Mellon University.11 The project was started in 2013 by

11The contents of this section are based on [? ], which was written
with Jakob von Raumer and Ulrik Buchholtz.

55



Leonardo de Moura to bridge the gap between interactive
theorem proving and automated theorem proving. Lean
is an open-source program released under the Apache Li-
cense 2.0.

In its short history, Lean has undergone several ma-
jor changes. The second version (Lean 2) supports two
kernel modes. The standard mode is for proof irrelevant
reasoning, in which Prop, the bottom universe, contains
types whose objects are considered to be judgmentally
equal. This is incompatible with homotopy type theory,
so there is a second HoTT mode without Prop. In 2016,
the third major version of Lean (Lean 3) was released [?
]. In this version, many components of Lean have been
rewritten. Of note, the unification procedure has been
restricted, since the full higher-order unification that is
available in Lean 2 can lead to timeouts and error mes-
sages that are unrelated to the actual mistakes. Due
to certain design decisions, such as proof erasure in the
virtual machine and a function definition package that
requires axiom K [? ], the homotopy type theory mode
is currently not natively supported in Lean 3. However,
a trick found by Gabriel Ebner allows us to build a ho-
motopy type theory library in Lean 3. In this library, we
do not use singleton elimination, which is the feature of
Prop that is inconsistent with univalence. Singleton elim-
ination is the property that some Prop-valued inductive
types can eliminate to all universe levels. Gabriel Ebner
also wrote a piece of code that no definition in this library
uses singleton elimination in its definition. Porting the
HoTT library from Lean 2 to Lean 3 is a lot of work, be-
cause of the changes in the elaborator and in the syntax.

56



All major results in this dissertation are only formalized
in Lean 2 and not yet in Lean 3. The HoTT 3 library
can be found at https://github.com/gebner/hott3.

The HoTT kernel of Lean 2 provides the following
primitive notions:

• Type universes Type.{u} : Type.{u + 1} for each
universe level u ∈ N. In Lean, this chain of uni-
verses is non-cumulative, and all universes are pred-
icative.

• Function types A → B : Type.{max u v} for types
A : Type.{u} and B : Type.{v} as well as de-
pendent function types Πa, B a : Type.{max u
v} for each type A : Type.{u} and type family
B : A → Type.{v}. These come with the usual �
and � rules.

• inductive types and inductive type families, as pro-
posed by Peter Dybjer [? ]. Every inductive defini-
tion adds its constructors and dependent recursors
to the environment. Pattern matching is not part
of the kernel

• two kinds of higher inductive types: n-truncation
and (typal) quotients.

Outside the kernel, Lean’s elaborator uses backtrack-
ing search to infer implicit information. It does the fol-
lowing simultaneously.

• The elaborator fills in implicit arguments that can
be inferred from the context, such as the type of the

57

https://github.com/gebner/hott3


term to be constructed and the given explicit argu-
ments. Users mark implicit arguments with curly
braces. For example, the type of equality is eq
: Π{A : Type}, A → A → Type, which allows the
user to write eq a� a� or a� = a� instead of @eq
A a� a�. The symbol @ allows the user to fill in
implicit arguments explicitly. The elaborator sup-
ports both first-order unification and higher-order
unification.

• We can mark functions as coercions, which are then
“silently” applied when needed. For example, we
have the type of equivalences A � B, which is a
structure consisting of a function A → B with a proof
that the function is an equivalence. The map (A �
B) → (A → B) is marked as a coercion. This means
that we can write f a for f : A � B and a : A,
and the coercion is inserted automatically.

• Lean was designed with type classes in mind, which
can provide canonical inhabitants of certain types.
This is especially useful for algebraic structures and
for type properties like truncatedness and connect-
edness. Type class instances can refer to other type
classes, so that we can chain them together. This
makes it possible for Lean to automatically infer
why types are n-truncated if our reasoning requires
this, for example when we are eliminating out of a
truncated type. For example we show that the type
of functors between categories C and D is equivalent
to an iterated sigma type.
(Σ (F� : C → D) (F� : Π {a b}, hom a b →

58



hom (F� a) (F� b)),
(Π (a), F� (ID a) = ID (F� a)) ×
(Π {a b c} (g : hom b c) (f : hom a b),

F� (g � f) = F� g � F� f)) � functor C D

Note the use of coercions here: F� : C → D really
means a function from the objects of C to the ob-
jects of D. From this equivalence, Lean’s type class
inference can automatically infer that functor C D
is a set if the objects of D form a set. Type class in-
ference will repeatedly apply the rules when sigma-
types and pi-types are sets, and use the facts that
hom-sets are sets and that equalities in sets are sets
(in total 20 rules are applied for this example).

• Instead of giving constructions by explicit terms,
we can also make use of Lean’s tactics, which give
us an alternative way to construct terms step by
step. This is especially useful if the proof term is
large, or if the elaboration relies heavily on higher-
order unification.

• We can define custom syntax, including syntax with
binding. In the following example we declare two
custom notations.

infix � := concat
notation ‵Σ‵ binders ‵, ‵ r:(scoped P,

sigma P) := r

The first line allows us to write p � q for path con-
catenation concat p q. The second line allows us

59



to write Σ x, P x instead of sigma P. This no-
tation can also be chained: Σ (A : Type) (a :
A), a = a means sigma (�(A : Type), sigma (�(a
: A), a = a)).

All main results in this dissertation have been for-
malized in Lean. Some corollaries or examples have not
been formalized, in which case we will explicitly mention
this. The formalizations are separated in two Github
repositories: the Lean-HoTT library12 and the “spectral”
repository, which was originally a repository to formalize
spectral sequences, but now also contain many other re-
sults in synthetic homotopy theory.13

Below is a table with the locations of the formal
results in the libraries.

Theorem File Name
Theorem 3.1.8 hott/hit/prop_trunc.hlean ptrunc_equiv_trunc
Theorem 3.2.2 hott/hit/two_quotient.hlean simple_two_quotient.rec
Theorem 3.3.26 Spectral/colimit/seq_colim.hlean sigma_seq_colim_over_equiv
Corollary 3.3.28 Spectral/colimit/seq_colim.hlean seq_colim_eq_equiv
Theorem 4.1.1 hott/homotopy/LES_of_homotopy_groups.hlean is_exact_LES_of_homotopy_groups

Corollary 4.1.11 hott/homotopy/sphere2.hlean π2S2 and πnS3_eq_πnS2
Corollary 4.1.13 hott/homotopy/sphere2.hlean πnSn and π3S2
Theorem 4.2.7 Spectral/homotopy/EM.hlean AbGrp_equivalence_cptruncconntype′

Theorem 4.3.28 Spectral/homotopy/smash_adjoint.hlean smash_adjoint_pmap
Theorem 5.2.6 Spectral/algebra/spectral_sequence.hlean is_built_from_infpage
Theorem 5.3.7 Spectral/algebra/spectral_sequence.hlean converges_to_sequence
Theorem 5.4.10 Spectral/cohomology/serre.hlean atiyah_hirzebruch_convergence
Theorem 5.4.12 Spectral/cohomology/serre.hlean serre_convergence

12https://github.com/leanprover/lean2/blob/master/
hott/hott.md

13https://github.com/cmu-phil/Spectral/

60

https://github.com/leanprover/lean2/blob/master/hott/hott.md
https://github.com/leanprover/lean2/blob/master/hott/hott.md
https://github.com/cmu-phil/Spectral/


Chapter 3

Higher Inductive Types

In this chapter we will study properties of Higher In-
ductive Types (HITs), which we introduced in Section 2.2.6.
There is no uniformly accepted scheme of which HITs are
allowed, and the semantics of HITs is a topic of current
research. There are semantic interpretations of a large
class of Higher Inductive Types [? ], but there are still
open questions. Firstly, a general scheme for higher in-
ductive types is unknown, although [? ] is a step in
the right direction. Secondly, it is unknown whether uni-
verses can be closed under higher inductive types. This
is unknown even in the case for homotopy pushouts. In
this chapter, we do not study the semantics of higher in-
ductive types. Instead, we will work internally in a type
theory that has some specific HITs, and construct other
HITs from the ones we started with.

In particular, we are interested in the case where we
start with the quotient, or equivalently, the homotopy
pushout.

One HIT from Section 2.2.6 that we have not yet de-

61



fined using quotients is the n-truncation. In Section 3.1
we will define the propositional truncation using quo-
tients. A construction of the n-truncations is given by
the join construction [? ]. This shows that we can define
certain recursive HITs using quotients. We will make a
start on defining a bigger class of recursive HITs using
quotients in Section 3.3.

Another class of HITs we want to construct is HITs
with higher path constructors. We construct nonrecur-
sive 2-HITs in Section 3.2, using a method very similar
to the hubs and spokes method [? , Section 6.7].

One might wonder after these examples whether all
HITs can be reduced to quotients. This turns out to be
false. In [? , Section 9] the authors describe a specific
recursive 1-HITs that cannot be reduced to quotients.
Still, it is worthwhile to see which higher inductive types
can be constructed from quotients, for example if one is
interested in a model of HoTT with homotopy pushouts,
but without the extra structure to model all HITs.

3.1 Propositional Truncation
In this section we will construct the propositional

truncation from quotients.14

Given a type A, define {A} as the quotient of A by
the indiscrete relation R :≡ λ(a a′ : A),1. We will call
the type {A} the one-step truncation, since repeating it
will give the propositional truncation. We will denote its

14The contents of this section have been published in [? ]. How-
ever, Corollary 3.1.10 is new.

62



point constructor by f : A→ {A} and its path construc-
tor by e : (x y : A) → f(x) = f(y). We call a function
g : A→ B weakly constant if (x y : A)→ g(x) = g(y) is
inhabited. Note that maps {A} → B correspond exactly
to weakly constant maps A→ B.

Given a type A, we define a sequence {A}− : N→ U
by

{A}0 :≡ A

{A}n+1 :≡ {{A}n}
(3.1.1)

We have map fn :≡ f : {A}n → {A}n+1, which is the
constructor of the one-step truncation. This gives the
sequence

A
f−→ {A} f−→ {{A}} f−→ · · · (3.1.2)

We define {A}∞ = colim({A}−, f−). We will prove that
{A}∞ is the propositional truncation of A, in the sense
that the constructionA 7→ {A}∞ has the same formation,
introduction, elimination and computation rules for the
propositional truncation.

We have already shown the formation rule of the
propositional truncation (note that {A}∞ lives in the
same universe as A).

We also easily get the point constructor of the propo-
sitional truncation, because that is just the map i0 : A→
{A}∞. The path constructor (x, y : {A}∞)→ x = y, i.e.
the statement that {A}∞ is a mere proposition, is harder
to define. We will postpone this until after we have de-
fined the elimination and computation rules.

The elimination principle — or induction principle
— for the propositional truncation is the following state-
ment. Suppose we are given a family of propositions

63



P : {A}∞ → Prop with a section h : (a : A) → P (i0(a)).
We then have to construct a map k : (x : {A}∞)→ P (x).
To construct k, take an x : {A}∞. Since x is in a colimit,
we can apply induction on x. Notice that we construct
an element in P (x), which is a mere proposition, so we
only have to define k on the point constructors. This
means that we can assume that x ≡ in(a) for some n : N
and a : {A}n. Now we apply induction on n.

If n ≡ 0, then we can choose k(i0(a)) :≡ h(a) :
P (i0(a)).

If n ≡ `+1 for some ` : N, we know that a : {{A}`},
so we can induct on a. The path constructor of this in-
duction is again automatic. For the point constructor, we
can assume that a ≡ f(b). In this case we need to define
k(i`+1(f(b))) : P (i`+1(f(b))). By induction hypothesis,
we have an element y : P (i`(b)). Now we can transport
x along the equality (g`(b))−1 : i`(b) = i`+1(f(b)). This
gives the desired element in P (i`+1(f(b))).

We can write the proof in pattern matching nota-
tion:

• k(i0(a)) :≡ h(a)

• k(in+1(fn(a))) :≡ (gn(b))−1
∗ (k(in(b)))

The definition k (i0 a) :≡ h a is also the judgmental
computation rule for the point constructors of the propo-
sitional truncation.

For the remainder of this section we will prove that
{A}∞ is a mere proposition. We will need the following
two lemmas.
Lemma 3.1.3. Let X be a type with x : X. Then the
type (y : X)→ x = y is a mere proposition.

64



证明. To prove that (y : X) → x = y is a mere proposi-
tion, we assume that it is inhabited and show that it is
contractible. Let f : (y : X) → x = y. From this, we
conclude that X is contractible with center x. Now given
any g : (y : X)→ x = y, we know that f and g are point-
wise equal, because their codomain is contractible. By
function extensionality we conclude that f = g, finishing
the proof.
Lemma 3.1.4. If g : X → Y is weakly constant, then for
every x, x′ : X, the function apg : x = x′ → g(x) = g(x′)
is weakly constant. That is, g(p) = g(q) for all p, q : x =
x′.
证明. Let q : (x, y : X)→ g(x) = g(y) be the proof that
g is weakly constant, and fix x : X. We first prove that
for all y : X and p : x = y we have

g(p) = q(x, x)−1 · q(x, y). (3.1.5)

This follows from path induction, because if p is reflex-
ivity, then g(reflx) ≡ reflg(x) = q(x, x)−1 · q(x, x). The
right hand side of (3.1.5) does not depend on p, hence
apg is weakly constant.

To prove that {A}∞ is a mere proposition, we need
to show (x, y : {A}∞)→ x = y. Since (y : {A}∞)→ x =
y is a mere proposition, we can use the induction principle
for the propositional truncation on x, which we have just
proven for {A}∞. This means we only have to show that
for all a : A we have (y : {A}∞) → i0(a) = y. We do
not know that i0(a) = y is a mere proposition,15 so we

15Of course, we do know that it is a mere proposition after we
have finished the proof that {A}∞ is a mere proposition.

65



will just use the regular induction principle for colimits
on y. We then have to construct two inhabitants of the
following two types:

(i) For the point constructor we need p(a, b) : i0(a) =
in(b) for all a : A and b : {A}n.

(ii) We have to show that p respects path constructors:

p(a, f(b)) · g(b) = p(a, b). (3.1.6)

We have a map fn : A→ {A}n defined by induction
on n, which repeatedly applies f . We also have a path
gn(a) : in(fn(a)) = i0(a), which is a concatenation of
instances of g.

We can now define p(a, b) as displayed in Figure 3.1,
which is the concatenation

i0(a) = in+1(fn+1(a)) (using gn+1)
≡ in+1(f(fn(a)))
= in+1(f(b)) (using e)
= in(b) (using g)

Note that by definition gn+1(a) ≡ g(fn(a)) · gn(a),
so the triangle on the left of Figure 3.1 is a definitional
equality.

Now we have to show that this definition of p re-
spects the path constructor of the colimit, which means
that we need to show (3.1.6). This is displayed in Figure 3.2.
We only need to fill the square in Figure 3.2. To do
this, we first need to generalize the statement, because
we want to apply path induction. Note that if we give

66



•a

•fn(a)

•fn+1(a)

• b

• f(b) {A}n+1

{A}n

A

gn

g

gn+1

e

g

图 3.1: The definition of p. The applications of i and the
arguments of the paths are implicit.

67



•a

•fn(a)

•fn+1(a)

•fn+2(a)

• b

• f(b)

• f(f(b)) {A}n+2

{A}n+1

{A}n

A

gn

g

e

g

gg

e

图 3.2: The coherence condition for p. The applications
of i and the arguments of the paths are implicit.

68



•i(x)

•i(f(x))

• i(y)

• i(f(y)) {A}n+1

{A}n

i(p)

g

i(p′)

i(f(p))

g

图 3.3: The situation in Lemma 3.1.7.

the applications of i explicitly, the bottom and the top
of this square are

i
(
e(fn+1(a), f(b))

)
and

i
(
e(fn+2(a), f(f(b)))

)
,

respectively. This means we can apply the following
lemma to prove this equality.

Lemma 3.1.7. Suppose we are given x y : {A}n, p : x =
y and p′ : f(x) = f(y). Then we can fill the outer square
in Figure 3.3, i.e.

g(x) · i(p) = i(p′) · g(y).

证明. We can fill the inner square of the diagram by in-
duction on p, because if p is reflexivity, then the inner
square reduces to

g(x) · refli(x) = refli(f(x)) · g(x).

69



To show that the two paths in the top are equal, first
note that ik : {A}k → {A}∞ is weakly constant. To see
this, look at Figure 3.1. The path from fn(a) to b in that
figure gives a proof of in(fn(a)) = in(b) that does not use
the form of fn(a), so we also have ik(u) = ik(v) for u, v :
{A}k. Since in+1 is weakly constant, by Lemma 3.1.4 the
function

apin+1
: f(x) = f(y)→ in+1(f(x)) = in+1(f(y))

is also weakly constant. This means that the two paths
in the top are equal, proving the Lemma.

We have now given the proof of the following theo-
rem:
Theorem 3.1.8. The map A 7→ {A}∞ satisfies all the
properties of the propositional truncation ‖−‖, including
the universe level and judgmental computation rule on
point constructors.

We will mention two corollaries of this result. An
alternate proof of the first one is given in [? ].
Corollary 3.1.9. Given a weakly constant function h :
A→ A, there is a function ‖A‖ → A.
证明. The weakly constant function h gives a function
h̃ : {A} → A. The HIT {−} is functorial (just like all
other HITs), so by its functorial action we get a map
{h̃} : {{A}} → {A}, which we can compose with h̃ to
get a map {{A}} → A. By induction on n we get a map
kn : {A}n → A. Formally, we define

k0(a) :≡ a

kn+1(x) :≡ h̃({kn}(x))

70



However, this sequence of maps does not form a cocone,
because the triangles do not commute. (For example for
the first triangle we have to show h(a) = a for all a.)
But we can easily modify the definition by postcomposing
with h. Define hn :≡ h ◦ kn : {A}n → A. Now we
get a cocone; all triangles commute because h is weakly
constant. By the universal property of the sequential
colimit we get a map ‖A‖ → A.

We can also construct maps out of the propositional
truncation into a set by giving a weakly constant func-
tion. An alternate proof was given in [? ].

Corollary 3.1.10. Suppose given a weakly constant func-
tion g : A → B where B is a set. Then there is a map
g̃ : ‖A‖ → B such that g̃(|a|) = g(a).

证明. First note that given any map h : {X} → B, we
get a map h′ : {{X}} → B such that h′ ◦f ∼ h. Namely,
on point constructors we define h′(f(x)) :≡ h(x) for x :
{X}. Now given x′, y′ : {X}, we want to define h′ on
e(x′, y′). We perform induction on both x and y. In the
case that both x and y are point constructors, x′ ≡ f(x)
and y′ ≡ f(y) we can define

aph′(e(x′, y′)) := aph(e(x, y)) : h′(f(x′)) ≡ h(f(x)) = h(f(y)) ≡ h′(f(y′)).

In the other three cases, we are constructing a 2-path (or
3-path) in B, which is automatically filled because B is
a set. This finishes the construction of h′, which satisfies
h′ ◦ f ∼ h by definition.

Now we can define a cocone gn : {A}n → B as fol-
lows. g0 and g1 are given by g. We now define gn+2 :≡

71



g′
n+1. These g’s form a cocone because g′

n+2 ◦ f ∼ gn+1.
This gives a map g̃ : ‖A‖ → B such that g̃(|a|) = g(a).

An alternative construction of the propositional trun-
cation using non-recursive HITs has been given in [? ].
All results in this section have been fully formalized.

3.2 Non-recursive 2-HITs
We can also define nonrecursive 2-HITs using quo-

tients.16 There are various 2-HITs we would like to con-
struct, such as the torus (as formulated in Section 2.2.6),
groupoid quotients, and Eilenberg-MacLane spacesK(G, 1).
The construction of 2-HITS uses a method similar to the
hubs-and-spokes method described in [? , Sect. 6.7].

The idea behind the hubs-and-spokes method is that
for any path p : x =A x we can define a map f : S1 → A

with apf (loop) = p by circle induction. Then we can
prove the equivalence

(p = 1) ' (x0 : A)× (z : S1)→ f(z) = x0.

This equivalence informally states that filling in a loop is
the same as adding a new point x0, the hub, and spokes
f(z) = x0 for every z : S1, similar to the spokes in a
wheel. This means that in a higher inductive type, we
can replace a 2-path constructor p = 1x by a new point
constructor x0 : A and a family of 1-path constructors
(z : S1) → f(z) = x0. 2-path constructors of the form

16A summary of this section also appeared in [? ].

72



p = q can be replaced by the equivalent path constructor
p · q−1 = 1.

This construction reduces certain 2-HITs to 1-HITs.
However, this reduction is not a quotient, since this fam-
ily of path constructors refers to other path constructors
(in the definition of f), which is not allowed in quotients.
If we use quotients, we need to take the quotient twice.
We first define a quotient with only the 1-paths (and the
hubs), and then use another quotient to add the spokes.
In this section we will describe this construction of 2-HITs
from quotients.

To be more formal, let us first prove a slightly more
general version of the above equivalence.
Lemma 3.2.1. Given a path p : a =A a and f : A→ B,
we have an equivalence
e : ((b0 : B)×(z : S1)→ f(S1.rec(a, p, z)) = b0) ' (apf (p) = 1),

where S1.rec : (y : P ) → y = y → S1 → P is the nonde-
pendent eliminator of the circle S1.
证明. This follows from the following chain of equiva-
lences.

(b0 : B)× (z : S1)→ f(S1.rec(a, p, z)) = b0

' (b0 : B)× (q : f(a) = b0)× q =f(S1.rec(a,p,−))=b0
loop q

' 1f(a) =f(S1.rec(a,p,−))=f(a)
loop 1f(a)

' apf◦S1.rec(a,p)(loop) = ap0f(a)
(loop)

' apf (p) = 1.

More formally, for A : U and R : A → A → U we
will define words in R to be the following inductive family
of types:

73



inductive wordsR : A→ A→ U :=
• [−] : {a a′ : A} → R(a, a′)→ wordsR(a, a′);
• 〈−〉 : {a a′ : A} → a = a′ → wordsR(a, a′);
• −−1 : {a a′ : A} → wordsR(a, a′)→ wordsR(a′, a);;
• −·− : {a1 a2 a3 : A} → wordsR(a1, a2)→ wordsR(a2, a3)→
wordsR(a1, a3).

A specification for a (nonrecursive) 2-HIT consists of a
type A and two families R : A → A → U and S : {a a′ :
A} → wordsR(a, a′)→ wordsR(a, a′)→ U . Using this, we
define the 2-HIT two-quotient(A,R, S) with constructors

HIT two-quotient(A,R, S) :=
• [−]0 : A→ two-quotient(A,R, S);
• [−]1 : {a a′ : A} → R(a, a′)→ [a]0 = [a′]0;
• [−]2 : {a a′ : A} → {t t′ : wordsR(a, a′)} → S(t, t′)→
[t]1 = [t′]1.

where [t]1 is the action of [−]1 on words in R. So if
t : wordsR(a, a′), then [t]1 : [a]0 = [a′]0 is defined by
recursion over t. For example, the recursive steps for
concatenation of words is

[t1 · t2]1 :≡ [t1]1 · [t2]1.

Before we define two-quotient(A,R, S), we first de-
fine a special case with only reflexivities on the right hand
side of 2-path constructors. This is the following HIT,
where Q has type {a : A} → wordsR(a, a)→ U .

HIT simple-two-quotient(A,R,Q) :=
• [−]0 : A→ simple-two-quotient(A,R,Q);
• [−]1 : {a a′ : A} → R(a, a′)→ [a]0 = [a′]0;
• [−]2 : {a : A} → {t : wordsR(a, a)} → Q(t) → [t]1 =
1.

74



To define this, we first define a new type where we add a
hub to A for every path specified by Q.

B :≡ A+ (a : A)× (t : wordsR(a, a))×Qt.

Then we quotient this as specified by R, to obtain the
1-paths.

C :≡ quotientB(RB),

where the inductive family of types RB is defined as fol-
lows.

inductive RB : B → B → U :=
• {a a′ : A} → R(a, a′)→ RB(inl a, inl a′).

We now define D :≡ simple-two-quotient(A,R,Q′) :≡
quotientC(RC) where RC is defined as the following in-
ductive family of types (we write ut :≡ S1.rec([inl a]0, [t]1) :
S1 → C)

inductive RC : C → C → U :=
• {a : A} → {t : wordsR(a, a)} → (q : Q(t)) → (x :
S1)→ RC(ut(x), [inr(a, t, q)]0).

We will now define the expected constructors, elimina-
tors, and computation rules for this two-quotient.

Theorem 3.2.2. The type D :≡ simple-two-quotient(A,R,Q)
is the HIT as specified above. This means that

• There is a 0-path constructor 〈−〉0 : A→ D;

• There is a 1-path constructor 〈−〉1 : {a a′ : A} →
R(a, a′)→ 〈a〉0 = 〈a′〉0;

• There is a 2-path constructor 〈−〉2 : {a : A} → {t :
wordsR(a, a)} → Q(t)→ 〈t〉1 = 1;

75



• There is an induction principle that states the fol-
lowing: given a family P : D → U with s0 : (a :
A)→ P 〈a〉0 and

s1 : {a a′ : A} → (r : R(a, a′))→ s0(a) =P
〈r〉1 s0(a′)

s2 : {a : A} → {t : wordsR(a, a)} → (q : Q(t))→ s1(t) =〈q〉2 1,

then P has a section f : (d : D) → P (d) that com-
putes on the point and 1-path constructors: f〈a〉0 ≡
s0(a) and apdf〈r〉1 = s1(r).

• There is a recursion principle that states the follow-
ing: given P : U with p0 : A→ P and

p1 : {a a′ : A} → R(a, a′)→ p0(a) = p0(a′)

p2 : {a : A} → {t : wordsR(a, a)} → Q(t)→ p1(t) = 1,

then there is a map g : D → P that computes on the
point 1-path and 2-path constructors. This means
that g〈a〉0 ≡ p0(a) for a : A, and that there is a
path ι1 : apg〈r〉1 = p1(r) for r : R(a, a′) and a filler
of the following square for q : Q(t).

apg〈t〉1 1

p1(t) 1

apapg〈q〉2

ι1 1
p2(q)

Remark 3.2.3.

76



• We do not prove a computation rule for the induc-
tion principle on 2-paths. Although we strongly ex-
pect this to be true, it will involve an elaborate com-
putation. This computation rule is not necessary
to define simple-two-quotient(A,R,Q) up to equiva-
lence. If we had another type with these exact con-
structors, eliminators and computation rules, we
can prove that it is equivalent to this one. Further-
more, in many examples of two-quotients we will 1-
truncate the result, such as for Eilenberg-MacLane
spaces and groupoid quotients (see Section 4.2). Af-
ter the 1-truncation, the computation rules on the
2-paths are automatic, since these 3-paths can be
constructed just from the assumption that the type
family is truncated.

• We do not define the recursion principle as a special
case of the induction principle. We can define it is
a much simpler way, so that we can compute its
action on 2-paths more easily.

• We use overlines to denote elimination out of the
inductive type wordsR. The exact type and defi-
nition of the overline depends on the type of the
object we overline. For example

〈−〉1 : wordsR(a, a′)→ 〈a〉0 = 〈a′〉0

is defined recursively by path concatenation and
path inversion. In contrast

s1 : (t : wordsR(a, a′))→ s0(a) =P
〈t〉1

s0(a′)

77



is defined recursively by pathover concatenation
and pathover inversion and

ι1 : (t : wordsR(a, a′))→ apg〈t〉1 = p1(t)

is defined recursively by horizontal concatenation
and horizontal inversion and by using the rules
apg(p·q) = apg(p)·apg(q) and apg(p−1) = (apg(p))−1.

证明. Constructors.
We define for a : A the point constructor

〈a〉0 :≡ [[inl a]0]0 : D

and for r : R(a, a′) the 1-path constructor

〈r〉1 :≡ ap[−]0 [r]1 : 〈a〉0 = 〈a′〉0

from the path constructors of C.
The 2-path constructor 〈q〉2 : 〈t〉1 = 1 for q : Q(t) is

defined as the concatenation 〈t〉1 = ap[−]0 [t]1 = 1. Here
the first equality is by a general lemma about wordsR that
states that apf (h(r)) = apf (h(r)). The second path uses
Lemma 3.2.1 and is defined as e([[inr(a, t, q)]0]0, [q,−]),
where

[q,−] : [S1.rec([inl a]0, [t]1, x)]0 ≡ [ut(x)]0 = [[inr(a, t, q)]0]0

is the path constructor [q, x]1 of D.

Induction Principle.
For the induction principle, suppose given P , s0, s1 and
s2 as in the theorem statement. We first define f0 : (c :
C)→ P [c]0 by induction on c : C. We define

f0[inl a] :≡ s0(a)

78



and (denoting b :≡ base : S1)

f0[inr(a, t, q)] :≡ transportP ([q, b]1, s0(a)).

For the path constructor, we need to construct for r :
R(a, a′) the pathover

apdf0 [r]1 : s0(a) =P [−]0
[r]1 s0(a′).

Here we can use s1, and then apply the equivalence

y =P
apf (p) y

′ ' y =P◦f
p y′.

Note that this equivalence holds by reflexivity in a cubi-
cal type theory. In the remainder of this proof we will
denote any occurrence of this and similar by a tilde for
readability. So we define

apdf0 [r]1 := s̃1(r).

This defines f0, which is f applied to the point construc-
tor of D, that is, f [c]0 :≡ f0(c). Now we need to define
for x : S1 the pathover

apf [q, x]1 : f0(ut(x)) =P
[q,x]1 ([q, b]1)∗(s0a).

We will fill this pathover by induction to x. For x ≡ b we
can constructor the resulting pathover by

1[q,b]1 : apf [q, b]1 : s0a =P
[q,b]1 ([q, b]1)∗(s0a),

where in general 1p : y =P
p p∗(y) can be easily defined by

induction on p. When x varies along loop, we need to

79



construct a pathover between two pathovers and this cor-
responds to the following squareover. The bottom square
is a square in D, namely the naturality square of

[(q,−)]1 : (x : S1)→ [ut(x)]0 = [[inr(a, t, q)]0]0

applied to the path loop, and the top square is the square-
over we need to fill.

s0(a) [q, b]1∗(s0(a))

s0(a) [q, b]1∗(s0(a))

1[q,b]1

ãpdf0◦ut(loop) ãpd0[q,b]1∗(s0(a))
(loop)

1[q,b]1

〈a〉0 [[inr(a, t, q)]0]0

〈a〉0 [[inr(a, t, q)]0]0

[q, b]1

ap[ut(−)]0(loop) ap0[[inr(q)]0]0
(loop)

[q, b]1

We will first focus on the left side of the squareover. We

80



compute

ãpdf0◦ut(loop) = ãpdf0(aput(loop))
= ãpdf0([t]1)

= ˜̃
s1(t)

= s̃1(t)

= ˜(〈q〉−1
2 )∗1 (using s2)

≡: 1̃.

Here with 1̃ we mean the pathover 1 : s0(a) =P
1〈a〉0

s0(a)
but transported along the path

1〈a〉0

〈q〉2= 〈t〉1 = ap[−]0 [t]1 = ap[−]0(aput(loop)) = ap[ut(−)]0(loop).

By unfolding the definition of 〈q〉2 this can be simplified
to the following concatenation:

1〈a〉0
e= ap[−]0 [t]1 = ap[−]0(aput(loop)) = ap[ut(−)]0(loop).

The right side of the squareover is easier to manipulate:

ãpd0[q,b]1∗(s0(a))
(loop) = 1̃,

where in this case we mean the pathover 1 : s0(a) =P
1〈a〉0

s0(a) transported along the path

1〈a〉0 = ap0[[inr(q)]0]0
(loop).

Now in both the left and the right side these transports
only act on the path they lie over. This means that we
can “push them down” to the base square.

81



After we do that, we have a vertically degenerate
squareover, and we only have to show that the square
over which it lies is also vertically degenerate, which is a
straightforward calculation.

This finishes the definition of f . The computation
rule f〈a〉0 ≡ s0(a) follows directly from the computation
rule for the quotient. Furthermore, we have

apdf〈r〉1 ≡ apdfap[−]0 [r]1 = ãpdf◦[−]0 [r]1 ≡ ãpdf0 [r]1 = s1(r).

Recursion Principle.
For the recursion principle, suppose given P, p0, p1, p2 as
in the theorem statement. We first define g0 : C → P by

g0[inl a]0 :≡ p0(a)
g0[inr(a, t, q)]0 :≡ p0(a)

apg0 [r]1 := p1(r).

We define g : D → P by g[c]0 :≡ g0(c) and then we need
to define apg[q, x]1 : g0(ut(x)) = p0(a), which we do by
induction to x. For x ≡ b, this can be done by reflexivity,
so apg[q, b]1 := 1p0(a). When x varies over loop, we need
to fill the following square.

p0(a) p0(a)

p0(a) p0(a)

1

apg0◦ut(loop) ap0p0(a)
(loop)

1

This can be done by the following calculation.

apg0◦ut(loop) = apg0aput(loop) = apg0 [t]1 = p1(t)
p2= 1 = ap0p0(a)

(loop).

82



This completes the definition of g. The computation rule
g〈a〉0 ≡ p0(a) follows from the computation rule for quo-
tients on points. We can define the computation rule on
paths as the composite

ι1 : apg〈r〉1 ≡ apgap[−]0 [r]1 = apg0 [r]1 = p1(r).

The fact that g has the correct computation rule for 2-
paths requires some complicated path algebra, which we
will omit here.

We can now define the general version of the 2-quotient,
two-quotient(A,R, S), to be equal to simple-two-quotient(A,R,Q)
where Q is the inductive family

inductive Q : {a : A} → wordsR(a, a)→ U :=
• (a a′ : A) → (t t′ : wordsR(a, a′)) → (s : S(t, t′)) →
Q(t · t−1).

We then show that two-quotient(A,R, S) and ‖ two-quotient(A,R, S)‖n
have the right elimination principles and computation
rules (it requires some work to show that the eliminator
of the truncated 2-quotient has the right computation
rules on 2-paths).

This allows us to define all nonrecursive HITs with
point, 1-path and 2-path constructors. For example,
we define the torus T 2 := two-quotient(1, R, S) where
R(, ) = 2 (giving two path constructors p and q from the
basepoint to itself) and Q is generated by the constructor
s0 : S(02 ·12)(12 ·02), which determines a path p ·q = q ·p.
We also define the groupoid quotient: For a groupoidG we
define its quotient as ‖ two-quotient(G, homG, S)‖1 where:

inductive S :=

83



• (a b c : G) → (g : hom(b, c)) → (f : hom(a, b)) →
S(g ◦ f)(f · g)

If G is just a group (considered as a groupoid with a sin-
gle object), then the groupoid quotient of G is exactly
the Eilenberg-MacLane space K(G, 1). For more infor-
mation, see Section 4.2.

3.3 Colimits
We can ask whether we can use the construction of

Section 3.1 can be generalized to construct other higher
inductive types.17 The general idea is that we can con-
struct a recursive higher inductive type as a sequential
colimit of repeatedly applying a nonrecursive version of
the HIT. This does not work in general: if a constructor is
infinitary, there is no reason why the type after ω many
steps is the desired type. However, this does work for
a general class of higher inductive types, the ω-compact
localizations. In this section we will show various prop-
erties of colimits that are used in the proof of this fact.
The full proof will appear in an upcoming preprint.

Definition 3.3.1. Suppose given a type A, families P,Q :
A→ U and F : {a : A} → P (a)→ Q(a).

A type X is F -local if for all a : A the map

ψX(a) :≡ λf. f ◦ F (a) : (Q(a)→ X)→ (P (a)→ X)

is an equivalence.
17The work in this section is joint work with Egbert Rijke and

Kristina Sojakova.

84



The F -localization LFX or LX of X turns X into
a F -local type in a universal way. This means there is
a map `X : X → LX such that for any F -local type Y
there is an equivalence of maps (LX → Y ) → (X → Y )
given by precomposition with `X . LFX can be given as
a higher inductive type with the following constructors:

HIT L F X : Type :=
| incl : X → L X
| rinv : Π{a} (f : P a → L X), Q a → L X
| isri : Π{a} (f : P a → L X) (x : P a),

rinv f (F x) = f x
| linv : Π{a} (f : P a → L X), Q a → L X
| isli : Π{a} (f : Q a → L X) (x : Q a),

linv (f � F) x = f x.

For a sequence (An, fn)n we denote the colimit by
colim(A) or A∞. Also, for any type X, we can define a
new sequence (X → An, fn ◦ (−))n. Note that there is a
canonical map

ξX : colim(X → An)→ (X → A∞).

It is defined by ξX(in(f)) :≡ in◦f and ξX(κ(f)) :≡ κn◦f ,
where κ is the path constructor of the colimit.

Definition 3.3.2. A type X is said to be ω-compact if
the map ξX is an equivalence for all sequences (An, fn)n.

Examples of ω-compact types are the finite types.
Moreover, the ω-compact types are closed under depen-
dent pair types and pushouts. A non-example of an ω-
compact type is N. We will omit the details here.

85



Theorem 3.3.3. Assume that for all a : A the types
P (a) and Q(a) are ω-compact. Then we can construct
the F -localization in MLTT+quotients.

We will not prove this theorem here, but defer it to
an upcoming preprint. However, we will develop machin-
ery here that is crucial to prove this theorem. In partic-
ular we prove that sigma-types commute with sequential
colimits.

Type Sequences

Definition 3.3.4. A type sequence (A, f) consists of a
diagram of the form

A0 A1 A2 · · ·f0 f1 f2

Thus, the type of all sequences of types is

Seq :≡ (A : N→ U)× (n : N)→ An → An+1

Recall that the relation ≤ on the natural numbers is
defined as an inductive family of types ≤ :N → N → U
with

r : (n : N)→ n ≤ n

s : (n,m : N)→ n ≤ m→ n ≤ m+ 1.

It follows that n ≤ m is a a mere proposition for each
n,m : N.
Definition 3.3.5. Let (A, f) be a type sequence. For
any n,m : N, we define

fn≤m : An → Am.

where we leave the proof that n ≤ m implicit.

86



Construction. We define fn≤m by induction on the proof
that n ≤ m by taking

fn≤n :≡ idAn
fn≤m+1 :≡ fm ◦ fn≤m

Definition 3.3.6. Let (A, f) be a type sequence. For
any n, k : N, we define fkn : An → An+k to be fn≤n+k(p),
where p is the canonical proof that n ≤ n+ k.

Definition 3.3.7. A sequence (B, g) of types over (A, f)
consists of a diagram of the form

B0 B1 B2 · · ·

A0 A1 A2 · · ·

g0 g1 g2

f0 f1 f2

where each gn has type (a : An)→ Bn(x)→ Bn+1(fn(a)),
implicitly rendering the squares commutative.

We say that a sequence (B, g) over (A, f) is equifibered
if each gn is a family of equivalences.

Definition 3.3.8. Let (A, f) and (A′, f ′) be type se-
quences. A natural transformation (A, f) → (A′, f ′) is
a pair (τ,H) consisting of a family of maps

τ : (n : N)→ An → A′
n

and a family Hn of homotopies witnessing that the dia-
gram

A0 A1 A2 · · ·

A′
0 A′

1 A′
2 · · ·

f0

τ0

f1

τ1

f2

τ2
f ′

0 f ′
1 f ′

2

87



commutes.

Definition 3.3.9. A natural equivalence is a natural trans-
formation (τ,H) such that each τn is an equivalence.
The type of natural equivalences from (A, f) to (A′, f ′)
is called NatEq((A, f), (A′, f ′)).

Lemma 3.3.10. The canonical dependent function idtonateq

((A, f) = (A′, f ′))→ NatEq((A, f), (A′, f ′))

that sends refl(A,f) to the identity natural transformation,
is an equivalence.

证明. Straightforward application of univalence.

Every type sequence (B, g) over (A, f) gives rise to
a natural transformation, by the following definition.

Definition 3.3.11. Let (B, g) be a sequence over (A, f).
Then we define the sequence Σ((A, f), (B, g)) to consist
of the diagram

(a : A0)×B0(a) (a : A1)×B1(a) (a : A2)×B2(a) · · ·(f0,g0) (f1,g1) (f2,g2)

where we take the usual definition

(fn, gn) :≡ λ(a, b). (fn(a), gn(a, b)).

Furthermore, we define a natural transformation

(π, θ) : Σ((A, f), (B, g))→ (A, f)

by taking

πn :≡ pr1 : ((a : An)×Bn(a))→ An

θn(a, b) :≡ reflfn(a) : fn(pr1(a, b)) = pr1(fn(a), gn(b)).

88



We will now look at the shift operation on type se-
quences, in particular to bring up subtleties that come
up in the formalization of mathematics in homotopy type
theory. The issue we face is that equality in the natural
numbers is not always strict. For instance, when addi-
tion is defined by induction on the second argument, then
n+ 0 is judgmentally equal to n, while 0 +n is not. This
implies that sometimes we might have to transport along
the equalities in the natural numbers (such as n = 0+n),
and this complicates the formalization process.

We define the shift operation.

Definition 3.3.12. For any type sequence (A, f) we de-
fine a new type sequence (S(A), S(f)) by taking

S(A)n :≡ An+1

S(f)n :≡ fn+1.

Of course we can iterated the shift operation, defin-
ing a type sequence (Sk(A), Sk(f)) for every k : N. How-
ever, while the type Sk(A)n is An+k, the function Sk(f)n
is some function An+k → A(n+1)+k that is not judgmen-
tally equal to a function of the form fm for some m : N.
Therefore, we make an alternative definition of the k-shift
that is different from Sk, the type sequence obtained from
iterating the shift S.

Definition 3.3.13. Given a type sequence (A, f), we
define Sk(A, f) ≡ (Sk(A), Sk(f)) to be the type sequence
given by

Sk(A)n :≡ Ak+n

Sk(f)n :≡ fk+n.

89



Given a dependent sequence (B, g) over (A, f), we also
define Sk(B, g) ≡ (Sk(B), Sk(g)) by

Sk(B)n :≡ Bk+n

Sk(g)n :≡ gk+n.

Note that the sequence (Sk+1(A), Sk+1(f)) is not
judgmentally equal to the sequence S(Sk(A), Sk(f)), since
in general we do not have (k+1)+n ≡ (k+n)+1. There-
fore we have the following lemma.
Lemma 3.3.14. For any k, n : N and a : Ak, one has
qk,n(a) : fn+1

k (a) =A
p(k,n) f

n
k+1(fk(a)) where p(k, n) : (k +

n) + 1 = (k + 1) + n is the canonical path in N.
证明. By induction on n : N.
Corollary 3.3.15. For any type sequence (A, f), the type
sequence (Sk+1(A), Sk+1(f)) is naturally equivalent to the
type sequence (S(Sk(A)), S(Sk(f))).

Sequential Colimits

Remark 3.3.16. The induction principle for sequential
colimits tells us how to construct a dependent function
f : (a : A∞)→ P (a) for a type family P : A∞ → U .

Given s : (a : A∞)→ P (a), we get

λn. λa. s(ιn(a)) : (n : N)(a : An)→ P (ιn(a))
λn. λa. apdsκn(a) : (n : N)(a : An)→ s(ιn(a)) =P

κn(a) s(ιn+1(fn(a)))

In other words, we have a canonical map(
(a : A∞)→ P (a)

)
→(

(h : (n : N)(a : An)→ P (ιn(a)))× (n : N)(a : An)→ hn(a) =P
κn(a) hn+1(fn(a))

)

90



Now we can state the induction principle and computa-
tion rule concisely: the canonical map described above
comes equipped with a section. We assume that that the
computation rule is strict on the point constructors.

The universal property of sequential colimits is a
straightforward consequence of the induction principle.

Theorem 3.3.17. Let (A, f) be a type sequence, and let
X be a type. Then the canonical map

(A∞ → X)→ (h : (n : N)→ An → X)×(n : N)→ hn ∼ hn+1◦fn

is an equivalence.

The following theorem is a descent theorem for se-
quential colimits.

Theorem 3.3.18. Consider a sequence (A, f). The type
A∞ → U is equivalent to the type of equifibered type se-
quences over (A, f).

证明. By the universal property of A∞ and by univalence
we have

(A∞ → U) ' (B : (n : N)→ An → U)× (n : N)→ Bn ∼ Bn+1 ◦ fn
' (B : (n : N)→ An → U)× (n : N)(x : An)→ Bn(x) ' Bn+1(fn(x))

Lemma 3.3.19. Suppose given a natural transformation
(τ,H) : (A, f)→ (A′, f ′).

(i) We get a function colim(τ,H) or τ∞ : A∞ → A′
∞.

(ii) The sequential colimit is 1-functorial. This means
the following three things. If (σ,K) : (A′, f ′) →

91



(A′′, f ′′), then (τ ◦σ)∞ ∼ τ∞ ◦σ∞. Moreover, 1∞ ∼
id, where 1 is the identity natural transformation.
Lastly, if (τ ′, H ′) : (A, f) → (A′, f ′) and q : (n :
N) → τn ∼ τ ′

n and we can fill the following square
for all a : An

τn+1(fna) τ ′
n+1(fna)

f ′
n(τn(a)) f ′

n(τ ′
n(a))

qn+1(fna)

Hn(a) H′
n(a)

apf ′
n

(qn(a))

then τ∞ ∼ τ ′
∞.

(iii) If τ is a natural equivalence, then τ∞ is an equiva-
lence.

证明.
(i) We define τ∞(ιn(a)) :≡ ιn(τn(a)) and

apτ∞(κn(a)) := apιn+1(H(a))·κn(τn(a)) : ιn+1(τn+1(fna)) = ιn(τn(a)).

(ii) All three parts are by induction on the element of
A∞, and all parts are straightforward.

(iii) We define (τ∞)−1 :≡ (τ−1)∞ where τ−1 is the natu-
ral transformation by inverting τn for each n. Now
we can check that this is really the inverse by using
all three parts of the 1-functoriality.

τ−1
∞ ◦ τ∞ ∼ (τ−1 ◦ τ)∞ ∼ 1∞ ∼ idA∞ .

For the second homotopy we need to show that we
can fill a certain square, which is straightforward.
The other composite is homotopic to the identity
by a similar argument.

92



The following lemma states that ι0 is an equivalence
if all maps in the sequence are an equivalence. We will
have a more general result in Corollary 3.3.30(v), but in
that proof we will use some special cases of this lemma.

Lemma 3.3.20. Suppose given a sequence (A, f) where
fn is an equivalence for all n. Then ι0 : A0 → A∞ is an
equivalence.

证明. First note that the map f 0≤n : A0 → An is an
equivalence, which is an easy induction on the proof that
0 ≤ n, because f 0≤0 ≡ id is an equivalence and f 0≤n+1 ≡
fn ◦ f 0≤n is a composition of two equivalences.

Also note that we have paths κn≤m(a) : ιm(fn≤m(a)) =
ιn(a) for a : An.

Now we define ι−1
0 : A∞ → A0 as

ι−1
0 (ιn(a)) :≡ (f 0≤n)−1(a)

and we define

apι−1
0

(κn(a)) : (f 0≤n)−1(f−1
n (fn(a))) = (f 0≤n)−1(a)

as ap(f0≤n)−1(`n(a)), where `n(a) : f−1
n (fn(a)) is the canon-

ical path.
Now ι−1

0 ◦ ι0 ∼ id is true by definition. To show
that for x : A∞ we have p(x) : ι0(ι−1

0 (x)) = x, we use
induction on x. If x ≡ ιn(a), we have

ι0(ι−1
0 (ιn(a))) ≡ ι0((f 0≤n)−1(a))

= ιn(f 0≤n((f 0≤n)−1(a)))
= ιn(a).

93



If we write r0≤n : f 0≤n ◦ (f 0≤n)−1 ∼ id for the canonical
homotopy, then we explicitly define p(ιn(a)) as

p(ιn(a)) :≡ (κ0≤n((f 0≤n)−1(a)))−1 · apιn(r0≤n(a)).

If x varies over κn(a), then we need to fill the follow-
ing square.

ι0(ι−1
0 (ιn+1(fna))) ιn+1(fna)

ι0(ι−1
0 (ιn(a))) ιn(a)

p(ιn+1(fna))

ap
ι0◦ι−1

0
(κn(a)) κn(a)

p(ιn(a))

If we unfold the definitions of ι−1
0 and p, we can fill this as

the horizontal concatenation of the following two squares
(where we have left out some arguments to the paths)

ι0((f 0≤n)−1(f−1
n (fna))) ιn(f 0≤n((f 0≤n)−1(f−1

n (fna))))

ι0((f 0≤n)−1(a)) ιn(f 0≤n((f 0≤n)−1(a)))

(κ0≤n)−1

ap
ι0◦(f0≤n)−1 (`) ap

ιn◦f0≤n◦(f0≤n)−1 (`)

(κ0≤n)−1

ιn(f 0≤n((f 0≤n)−1(f−1
n (fna)))) ιn+1(fna)

ι0(f−1
n (fna))

ιn(f 0≤n((f 0≤n)−1(a))) ιn(a)

κ−1·apιn+1 (apf (r0≤n)·r)

ap
ιn◦f0≤n◦(f0≤n)−1 (`)

apιn (r0≤n)

κ

apιn (`)

apιn (r0≤n)

The first square is a naturality square, as is the bottom-
left part of the second square. We can use the triangle
equalities of f to rewrite the r in the top part to apf (`).

94



After doing that, the top-right square becomes the fol-
lowing naturality square.

ιn(fn(f 0≤n((f 0≤n)−1(f−1
n (fna))))) ιn+1(fna)

ι0(f−1
n (fna)) ιn(a)

apιn+1◦f (r0≤n·`)

κ κ

apιn (r0≤n·`)

Lemma 3.3.21. For any type sequence (A, f), the col-
imits of (A, f) and S(A, f) are equivalent.
证明. We construct a map ϕ : A∞ → S(A)∞ by induc-
tion on A∞, by taking

(x : An) 7→ ιS(A),S(f)
n (fn(x))

(x : An) 7→ κS(A),S(f)
n (fn(x)).

Next, we construct a map ψ : S(A)∞ → A∞ by
induction on S(A)∞, by taking

(x : S(A)n) 7→ ιA,fn+1(x)
(x : S(A)n) 7→ κA,fn+1(x).

Then we prove that ψ ◦ ϕ ∼ id by induction on A∞,
by taking

(x : An) 7→ κA,fn (x)

Now we compute

apψ◦ϕ(κA,fn (x))) = apψ(apϕ(κA,fn (x)))
= apψ(κS(A),S(f)

n (fn(x)))
= κA,fn+1(fn(x))

95



from the computation rules of A∞ and S(A)∞.
We construct the homotopy ϕ ◦ψ ∼ id by induction

on A∞, by taking

(x : S(A)n) 7→ κn+1(S(f)n(x))

Now we compute

apϕ◦ψ(κS(A),S(f)
n (x)) = apϕ(apψ(κS(A),S(f)

n (x)))
= apϕ(κA,fn+1(x))

= κ
S(A),S(f)
n+1 (fn+1(x)).

Lemma 3.3.22. For any type sequence (A, f), we have
an equivalence

kshift equivk : colim(A, f) ' colim(Sk(A, f)).

The shift operations and the corresponding equiva-
lences on the sequential colimits can be used to turn an
arbitrary sequence (B, g) over (A, f) into an equifibered
sequence over (A, f).

Definition 3.3.23. Given a dependent sequence (B, g)
over (A, f) and x : A0, we define a type sequence (B[x], g[x])
by

B[x]n :≡ Bn(fn(x))
g[x]n :≡ gn(fn(x), –).

Definition 3.3.24. Given any sequence (B, g) over (A, f),
we define an equifibered sequence (□B,□g) over the se-
quence (A, f).

96



Construction. For x : An we define

(□B)n(x) :≡ Sn(B)[x]∞ ≡ colimm(Bn+m(fm(x))).

Now note that

(□B)n+1(f(x)) ≡ colimm(B(n+1)+m(fm(f(x)))
' colimm(Bn+(m+1)(fm+1(x))
' colimm(Bn+m(fm(x))
≡ (□B)n(x)

The first equivalence un,m is given by transporting along
the dependent path in Lemma 3.3.14 in the family B.
This forms a natural equivalence, because transport is
natural. The second equivalence is given by applying
Lemma 3.3.21. We call the composite equivalence F ,
which shows that □B is an equifibered sequence.

Definition 3.3.25. Let (B, g) be a sequence over (A, f).
Then we define

B∞ : A∞ → U
to be the family over A∞ associated to the equifibered se-
quence (□B,□g) via the equivalence of Theorem 3.3.18.

By construction of B∞ we get the equality

r(y) : transportB∞(κn(x), y) = F (y)

for y : B∞(ιn+1(fn(x))) witnessing that B∞ is defined by
the equivalence F on the path constructor.

We now state our main result, which could be seen
as a flattening lemma for sequential colimits, with the
added generality that the sequence (B, g) over (A, f) is
not required to be equifibered.

97



Theorem 3.3.26. Let P :≡ (P, f) be a sequence over
A :≡ (A, a). Then we have a commuting triangle

colim(Σ(A,P )) (x : A∞)× P∞(x)

A∞

α

p:≡rec(ιn◦pr1,– ) pr1

in which α is an equivalence.

The strategy of the proof is to first show that (x :
A∞) × P∞(x) has the induction principle of colim((x :
An)×Pn(x), (an, fn))n. This simplifies giving the equiva-
lence, because (x : A∞)×P∞(x) is a 2-HIT, being a sigma-
type of two 1-HITs, while colim((x : An)×Pn(x), (an, fn))n
is a 1-HIT. Before we continue, we first define α.

The map α is defined by induction on colim(Σ(A,P )).
On the point constructors we define

α(ιn(x, y)) :≡ (ιn(x), ι0(y)).

For the path constructor we need to define

κ′
n(x, y) : (ιn+1(anx), ι0(fn(x, y))) = (ιn(x), ι0(y))

The first components are equal by κn(x). By the defini-
tion of P∞, transporting along κn(x) takes ι0(fn(x, y)) to
ι1(fn(x, y)), which is equal to ι0(y) by κ0(y). Explicitly,
we define

apα(κn(x, y)) := κ′
n(x, y) :≡ (κn(x), r(ι0(fn(x, y)))·κ0(y)).

Theorem 3.3.27. Let E : (x : A∞)→ P∞(x)→ U such
that

98



(i) For each n : N, x : An, y : Pn(x), a term en(x, y) :
E(ιn(x), ι0(y)).

(ii) For each n : N, x : An, y : Pn(x), a path

wn(x, y) : en+1(anx, fn(x, y)) =E
κ′
n(x,y) en(x, y).

Then there exists a function s : (x : A∞)(y : P∞(x)) →
E(y).

证明. We define the function s by induction on both x

and y. We need to consider four cases, since both x

and y can be a point constructor or vary over a path
constructor.

(point-point) Fix x : An, we first define g(n, x) : (p :
P∞(ιn(x))) → E(ιn(x), p). To obtain g(n, x), we do in-
duction on p : P∞(ιn(x)). Fix y : Pn+k(akn(x)), we need
to construct a term of type g∗(k, n, x, y) : E(ιn(x), ιk(y)).
Proceed by induction on k. We can define

g∗(0, n, x, y) :≡ en(x, y) : E(ιn(x), ι0(y)).

Assume that g∗(k) is defined. We need to define g∗(k +
1, n, x, y) : E(ιn(x), ιk+1(y)), where y : P (n+(k+1), ak+1

n (x)).
However, the type of y is equivalent to the type P ((n +
1) + k, akn+1(an(x))) via the equivalence un,k. Therefore,
it suffices to define for z : P(n+1)+k(akn+1(an(x)))

g∗(k + 1, n, x, un,k(z)) : E(ιn(x), ιk+1(un,k(z))).

By induction hypothesis we have g∗(k, n+1, an(x), z) :
E(ιn+1(an(x)), ιk(z)), so it suffices to show that

κ∗
n,k(x, z) : (ιn+1(an(x)), ιk(z)) = (ιn(x), ιk+1(un,k(z))).

99



This construction is similar to that of κ′
n(x, y). The first

components are equal by κn(x), and for the second com-
ponents we need to show that transportP∞(κn(x), ιk(z)) =
ιk+1(un,k(z)). This follows from the computation rule of
P∞ on paths, since the equivalence used to define P∞
sends ιk(z) to ιk+1(un,k(z)). Specifically,

κ∗
n,k(x, z) :≡ (κn(x), r(ιk(y))).

This finishes the construction of g∗, hence also of g on
points. By construction, we get the following equation:

µn,k(x, z) : g∗(k, n+1, an(x), z) =E
κ∗
n,k

(x,z) g∗(k+1, n, x, un,k(z))

(point-path) To define g on paths κk(y) : ιk+1(f(y)) =
ιk(y), we need to give a dependent path

ν(k, n, x, y) : g∗(k + 1, n, x, f(y)) =E(ιn(x))
κk(y) g∗(k, n, x, y).

We do this by induction on k. For k = 0 note that un,0 is
the identity function, and the goal definitionally reduces
to

ν(k, n, x, y) : transportE(κ∗
n,0(x, fn(x, y), en+1(an(x), fn(x, y)) =E(ιn(x))

κ0(y) en(x, y).

Note that κ′
n(x, y) = κ∗

n,0(fn(x, y)·(1, κ0(y)), which means
we get this from wn(x, y). Now suppose that ν(k) is de-
fined. We need to define for y : P (n+ (k + 1), ak+1

n (x))

ν(k+1, n, x, y) : g∗(k+2, n, x, f(y)) =E(ιn(x))
κk(y) g∗(k+1, n, x, y).

Now we again write y = un,k(z) for z : P ((n + 1) +
k, akn+1(an(x))) and we equivalently need to give

ν(k+1, n, x, un,k(z)) : g∗(k+2, n, x, f(un,k(z))) =E
(1,κk(y)) g∗(k+1, n, x, un,kz).

100



We will define this as the composition of a square that
we will give later in the proof.

(path-point) We have defined s on points construc-
tors of A∞. To define it on the path κn(x) : ιn+1(an(x)) =
ιn(x) we need a path g(n+1, an(x)) = g(n, x) over κn(x).
By function extensionality, we can characterize depen-
dent paths in a function type, which means we need to
show:

(p : P∞(ιn+1(an(x))))→ g(n+1, an(x), p) =E
(κn(x),1) g(n, x, transportP∞(κn(x), p)).

Now for p : P∞(ιn+1(an(x))), we can apply the path r(p),
which means we need to construct the following path
(note that r(p) is added to the path, since g is a de-
pendent function):

g(n+ 1, an(x), p) =E
(κn(x),r(p)) g(n, x, F (p)).

We proceed by induction on p. If p ≡ ιk(y) for k : N,
y : P(n+1)+k(akn+1(an(x))), then F (p) ≡ ιk+1(un,k(y)) and
we need a path

g∗(k, n+1, an(x), y) =E
(κn(x),r(ιk(y)))) g∗(k+1, n, x, un,k(y)).

Now the path (κn(x), r(ιk(y))) ≡ κ∗
n,k(x, y), hence this

dependent path is given by µn,k(x, y).
(path-path) If p varies over κk(y), we need to give

a dependent path in a family of dependent paths. This
is equivalent to filling the following dependent square in
the family E, which lies over the naturality square form

101



by applying λp. (κn(x), r(p)) to the path κk(y).18

g∗(k + 1, n+ 1, an(x), f(n+1)+k)(y)) g∗(k + 2, n, x, un,(k+1)(f(n+1)+k(y)))

g∗(k, n+ 1, an(x), y) g∗(k + 1, n, x, un,k(y))

µn,k+1(x,f(n+1)+k(y))

κ∗
n,k+1(x,fn+k(y))

apdg(n+1,an(x))(κk(y))))(1,κk(y) apdg(n,x)◦F (κk(y))))(1,κk(y)
µn,k(x,y)

κ∗
n,k(x,y)

Below and to the left of each equal sign we give the
path in (x : A∞) × P∞(x) over which the pathover lie.
Above and to the right of each equal sign we give the
value of the dependent path.

Now apdg(n+1,an(x))(κk(y)) (occurring in the left pathover)
is equal to ν(k, n+ 1, an(x), y) by definition of g. On the

18The left and right sides of the square are not quite correct,
the dependent function applied to κk(y) are pathovers lying over
κk(y), and not (1, κk(y)). However, pathovers lying over κk(y) in
the family E(ιn(x)) are equivalent to pathovers lying over (1, κk(y))
in the family E, and this equivalence commutes with all operations
we perform, therefore we omit them in this proof. The follow-
ing calculations are only type correct when these equivalences are
inserted back. Furthermore, we omit some other details. For ex-
ample, if p = q, then apdg(p) and apdg(q) have different types:
the former is a dependent path over p and the latter one over q.
However, if you modify the path over which they lie, they become
equal. These “modifications” can be pushed down to the square in
(x : A∞) × P∞(x), and the proof still goes through. For the full
details, consult the formal proof.

102



right, we have (δ is the naturality of un,k)

apdg(n,x)◦F (κk(y)) = apdg(n,x)(F (κk(y)))
= apdg(n,x)(ιk+2(δ(y)) · κk+1(un,k(y)))
= apdg∗(k+2,n,x)(δ(y)) · apdg(n,x)(κk+1(un,k(y)))
= apdg∗(k+2,n,x)(δ(y)) · ν(k + 1, n, x, un,k(y))

Now we can move the first part of the expression to the
top of the square, which means we need to fill the fol-
lowing squareover (where we made some arguments im-
plicit).

g∗(f(y)) g∗(u(f(y))) g∗(f(u(y)))

g∗(y) g∗(un,k(y))

µ(f(y))

κ∗(f(y))
ν(k,n+1,an(x),y)(1,κ(y))

apdg∗(k+2,n,x)(δ(y))

(1,δ(y))
ν(k+1,n,x,un,k(y))(1,κ(un,k(y)))

µ(y)

κ∗(y)

Note that in this squareover g does not occur, and ν

only occurs on the left side (applied to k) and on the
right side (applied to k + 1). Therefore, the top, bottom
and left side form a valid open box, and we define ν(k +
1, n, x, un,k(y)) to be the composition of this open box.
This inductively defines ν, and makes the filler for this
square automatic. This finishes the proof.

Proof (of Theorem 3.3.26). We first define a map

β :
(
(x : A∞)× P∞(x)

)
→ colim(Σ(A,P )).

We do this by induction on x : A∞ and p : P∞(x) indi-
vidually, so we get four cases again (we do not use our

103



newly defined induction principle, because we have not
proven a computation rule for it).

(point-point) Suppose x : An and y : Pn+k(akn(x)).
We define

β(ιn(x), ιk(y)) :≡ ιn+k(akn(x), y).

(point-path) To show that the second argument respects
κk(y), we define

apβ(ιn(x))(κk(y)) := κn+k(akn(x), y) : ιn+(k+1)(ak+1
n (x), f(y)) = ιn+k(akn(x), y).

(path-point) To show that the first argument respects
κn(x), we need to give a dependent path

β(ιn+1(an(x))) =P∞(−)→colim(Σ(A,P ))
κn(x) β(ιn(x)).

By function extensionality, this is equivalent to showing
for p : P∞(ιn+1(an(x))) that

β(ιn+1(an(x)), p) = β(ιn(x), transportP∞(κn(x), p)).

We apply ap−1
β(ιn(x))(r(p)) on the right, so that we have to

show
β(ιn+1(an(x)), p) = β(ιn(x), F (p)).

Now we apply induction on p. If p ≡ ιk(y), then F (p) ≡
ιk+1(un,k(y)) and we need to show

µn,k(x, y) : ι(n+1)+k(akn+1(an(x)), y) = ιn+(k+1)(ak+1
n , un,k(y)).

But the triples ((n+ 1) + k, akn+1(an(x)), y) and (n+ (k+
1), ak+1

n , un,k(y)) are equal: the first two components by
Lemma 3.3.14 and the last component because un,k was

104



defined by transporting along the equality of the first
components. Let us call this equality s. So we define
µn,k(x, y) by applying ι to s.

(path-path) Suppose p varies along κk(y), we need to
construct a proof of a pathover in an equality type. This
is equivalent to filling the following square.

β(ιn+1(an(x)), ιk+1(f(y))) β(ιn(x), ιk+2(un,k+1(f(y))))

β(ιn+1(an(x)), ιk(y)) β(ιn(x), ιk+1(un,k(y)))

µn,k+1(x,f(y))

apβ(ιn+1(anx))(κk(y)) apβ(ιn(x))◦F (κk(y))
µn,k(x,y)

By simplifying the left and right path, this reduces to

β(ι(a(x)), ι(f(y))) β(ι(x), ι(u(f(y)))) β(ι(x), ι(f(u(y))))

β(ι(a(x)), ιk(y)) β(ι(x), ι(u(y)))

µ(f(y))

κ(ak(a(x)),y)

apβ(ι(a(x)),ι(−))(κ(y))

κ(ak(x),u(y))
µ(y)

Now the concatenation of the two paths on the top re-
duces to the function i :≡ λn. λx. λy. ιn+1(a(x), f(y)) ap-
plied to s. Then the square is exactly the naturality
square of the homotopy κ : i ∼ ι applied to the path s.
This finishes the definition of β.

Now we need to show that β ◦ α ∼ id. Take p :
colim(Σ(A,P )), we apply induction to p. If p ≡ ιn(x, y),
then the equality holds by reflexivity:

β(α(p)) ≡ β(ιn(x), ι0(y)) ≡ ιn(x, y) ≡ p.

If p varies over κn(x, y), we need to fill a square with two
degenerate sides, so we need to prove that apβ◦α(κn(x, y)) =

105



κn(x, y). We can show this as follows.

apβ◦α(κn(x, y))
= apβ(κn(x), r(ι0(f(y))) · κ0(y))
= apβ(κ′

n(x, y))
= µn,1(x, f(y)) · ap−1

β(ιn(x))(r(ι0(f(y)))) · apβ(ιn(x))(r(ι0(f(y))) · κ0(y))
= µn,1(x, f(y)) · apβ(ιn(x))(κ0(y))
= apβ(ιn(x))(κ0(y))
= κn(x, y)

In the third step we use that apβ(p, q) = apdβ(p)(f(y)) ·
apβιn(x)(q) and in the fifth step that µn,k(x, y) = 1 for any
numeral k.

Finally we need to show that α◦β ∼ id. Take p : (x :
A∞) × P∞(x). We apply the induction principle proven
in Theorem 3.3.27 to p. Suppose that p ≡ (ιn(x), ι0(y)).
Then the equality holds by reflexivity:

α(β(p)) ≡ α(ιn(x, y)) ≡ (ιn(x), ι0(y)) ≡ p.

If p varies over κ′
n(x, y), then we have to show (similar to

the proof β ◦ α ∼ id) that

apα◦β(κ′
n(x, y))κ′

n(x, y).

But by the previous computation, apβ(κ′
n(x, y)) = κn(x, y),

so we have

apα◦β(κ′
n(x, y)) = apα(κn(x, y)) = κ′

n(x, y).

This finishes the proof.

106



Corollary 3.3.28. Consider a sequence (An, fn)n. Then
for any a, a′ : An there is an equivalence

(ιn(a) =A∞ ιn(a′)) ' colim(fk(a) =An+k f
k(a′)).

证明. We first prove this for n ≡ 0. Note that for any
a : A0, we have the diagram

λ(a′ :A0). a = a′ λ(a′ :A1). f(a) = a′ λ(a′ :A2). f 2(a) = a′ · · ·

A0 A1 A2 · · ·f0 f1 f2

This defines a type family P : A∞ → U with

P (ιn(a′)) :≡ colimk(f 0≤n+k(a) =An+k f
k(a′)).

Now we use Theorem 3.3.26 to see that the total space
of P is contractible.

(a′ : A∞)× P (a′) ' colimn((a′ : An)× fn(a) = a′)
' colimn(1)
' 1.

Since ι0(refl a) : P (ι0(a)) and noting that f 0≤0+k(a) ≡
fk(a) we can now conclude by the total space method to
characterize the identity type that

(ι0(a) =A∞ ι0(a′)) ' P (ι0(a′)) ≡ colim(fk(a) =A0+k f
k(a′)).

For general n, we use Lemma 3.3.22, which gives us
an equivalence kshift equivn : A∞ ' colim(Sn(A, f)). For

107



a, a′ : An we can now compute:

(ιn(a) =A∞ ιn(a′)) ' (kshift equivn(ιn(a)) =colim(Sn(A,f)) kshift equivn(ιn(a′)))
' (ι0(a) =colim(Sn(A,f)) ι0(a′))
' colim(Sn(f)k(a) =Sn(A)0+k Sn(f)k(a′))
' colim(fk(a) =An+k f

k(a′))..

The last equivalence comes from a natural equivalences of
the sequences, because there is a dependent path between
Sn(f)k(a) and fk(a) over the canonical path that n+(0+
k) = n+ k.

Corollary 3.3.29. Suppose given a natural transforma-
tion τ : (A′, f ′)→ (A, f) and a point a : An. Then

fibτ∞(ιn(a)) ' colim(□fibτ [a]) ≡ colimk(fibτn+k(fk(a))).

证明. Consider the following diagram, where the equiv-
alences on the top are given by Theorem 3.3.26 and the
fact that the total space of the fiber of a function is the
domain of that function.

(x : A∞)× (fibτ )∞(x) colimk((x : An))× fibτn(x)) A′
∞

A∞

∼

π1

∼

p
τ∞

This diagram commutes: the left triangle commutes by
Theorem 3.3.26 and the right triangle commutes by the
1-functoriality of the colimit, Lemma 3.3.19. Therefore,

fibτ∞(ιn(a)) ' fibπ1(ιn(a)) ' (fibτ )∞(ιn(a)) ≡ colim(□fibτ [a]).

108



Corollary 3.3.30. Consider a sequence (A, f) and some
k ≥ −2.

(i) If An is k-truncated for all n : N, then A∞ is k-
truncated.

(ii) We have an equivalence

‖A∞‖k ' colim(‖An‖k, ‖fn‖k)n.

(iii) If An is k-connected for all n : N, then A∞ is k-
connected.

(iv) Given a natural transformation (τ,H) : (A, f) →
(A′, f ′) such that τn is k-truncated (k-connected) for
all n, then τ∞ is k-truncated (k-connected).

(v) If fn is k-truncated (k-connected) for all n, then ι0
is k-truncated (k-connected).

Remark 3.3.31. By Lemma 3.3.22 we can generalize the
quantification “for all n : N” in this Corollary to the
weaker “there exists an m : N such that for all n ≥ m”.
In part (v) the conclusion then becomes that ιm is k-
truncated (k-connected).

证明.

(i) We prove this by induction on k. Suppose k = −2,
then fn is an equivalence for all n. Therefore A∞ '
A0 by Lemma 3.3.20, hence A∞ is contractible.
Now suppose k ≡ k′ + 1. Take x, x′ : A∞, we
need to show that x = x′ is k′-truncated. Since
being truncated is a mere proposition, by induction

109



on x and x′ we may assume that x ≡ ιn(a) and
x′ ≡ ιm(a′). Now ιn(a) = ιmax(n,m)(fn≤max(n,m)(a))
and ιm(a′) = ιmax(n,m)(fm≤max(n,m)(a′)), therefore
the type ιn(a) = ιm(a′) is equivalent to

ιmax(n,m)(fn≤max(n,m)(a)) = ιmax(n,m)(fm≤max(n,m)(a′)).

Therefore it suffices to show that the latter equality
type is k′-truncated. By Corollary 3.3.28 we need
to show that

colim(f `(fn≤max(n,m)(a)) = f `(fm≤max(n,m)(a′)))`
is k′-truncated, which follows from the induction
principle and the fact that Amax(n,m)+` is (k′ + 1)-
truncated.

(ii) From the functoriality of the sequential colimit, we
get a function

A∞ → colimn(‖An‖k, ‖fn‖k).

Because the right hand side is k-truncated, this in-
duces a map

g : ‖A∞‖k → colim(‖An‖k, ‖fn‖k)n.

For the other direction, we define the function

h : colim(‖An‖k, ‖fn‖k)n → ‖A∞‖k
by

h(ιn(|a|k)) :≡ |ιn(a)|k
and

aph(κn(|a|k)) := ap|– |
k
(κn(a)).

It is straightforward to show that both h ◦ g and
g ◦ h are homotopic to the identity.

110



(iii) Since An is k-connected, ‖An‖k is contractible, and
therefore colimn(‖An‖k) ' ‖A∞‖k is contractible.

(iv) A function is k-truncated (k-connected) whenever
its fibers are k-truncated (k-connected). Let x :
A∞. We need to show a proposition, so we may
assume that x ≡ ιn(a) for some a : An. Now
fibτ∞(ιn(a)) ' colim(□fibτ [a]) by Corollary 3.3.29.
Since fibτn(x) is k-truncated (k-connected) for all
n, we know that colim(□fibτ [a]) is k-truncated (k-
connected) for all n, by part (i) or (iii).

(v) Consider the natural transformation

A0 A0 A0 A0 · · · colim(A0)n

A0 A1 A2 A3 · · · A∞

f f0≤2 f0≤3

The maps f 0≤n : A0 → An are k-truncated (k-
connected) and form a natural transformation. There-
fore, by part (iv) the map f 0≤∞ : colimn(A0)→ A∞
is k-truncated (k-connected). The fiber of ι0 over
x : A∞ is the same as the fiber of f 0≤∞ over x, and
therefore ι0 is k-truncated (k-connected).

We can use this machinery, in particular Theorem 3.3.26,
to define the localization for maps between ω-compact
types. We will omit the construction here, but this will
be published in an upcoming preprint.

111



Chapter 4

Homotopy Theory

As discussed in the introduction, one very useful ap-
plication of HoTT is synthetic homotopy theory. Many
results in homotopy theory have been stated and proven
in HoTT in a synthetic way. Most of these results have
also been formalized in a proof assistant. This is impor-
tant, because one of the advantages of HoTT is to make
verification of proofs by a proof assistant practically possi-
ble. Formalizing results that have been proved internally
in HoTT provides more evidence for this.

In this chapter we will look at various topics in ho-
motopy theory and give proofs for them in HoTT that are
fully checked by the Lean proof assistant. In Section 4.1
we will describe a formalization of the proof that π3(S2) =
Z. This was already known to be provable in HoTT,
but no fully formalized proof has been given before. We
will discuss some new properties proven about Eilenberg-
MacLane spaces in HoTT in Section 4.2, namely that the
Eilenberg-MacLane space functor induces an equivalence
of categories. In Section 4.3 we prove the adjunction of

112



the smash product and pointed maps, from which we can
conclude that the smash product is associative.

None of these results have been formalized before,
even including formalization in foundations other than
HoTT. In fact, not much homotopy theory has been for-
malized in other foundations. The most notable examples
of formalizations are the formalization of basic properties
of the fundamental group [? ] and the formalization of
singular homology theory [? , Multivariate/homology.ml].

4.1 Computing π3(S2)
Computing that π3(S2) = Z has been done before

in Homotopy Type Theory, but it has not been formal-
ized in a proof assistant before. In this section we will
discuss some considerations of formalizing the proof that
π3(S2) = Z. The Hopf fibration was formalized in Lean
by Ulrik Buchholtz and was formalized before in Agda
by Guillaume Brunerie. The remaining results are for-
malized by the author.

4.1.1 The long exact sequence of homo-
topy groups

We start with an important result in homotopy the-
ory, the long exact sequence of homotopy groups.

This has been proven before in HoTT. Two different
proofs are given in [? , Section 8.4] and [? , Section
2.5.1], although these proofs have not been formalized.
There have been previous formalizations of parts of this
result [? ? ? ]; however none of these formalizations are

113



complete in the sense that they can be used to deduce
the results in this section.

The statement is as follows.

Theorem 4.1.1 (Long exact sequence of homotopy groups).
Suppose f : X → Y is a pointed map. Then the following
is an exact sequence

π0(Y )π0(X)π0(F )

π1(Y )π1(X)π1(F )

π2(Y )π2(X)π2(F )

...

π0(f)

π0(p1)

π0(δ)

π1(f)

π1(p1)

π1(δ)

π2(f)

π2(p1)

Here F :≡ fibf is the fiber of f , p1 : F → X is the first
projection, and δ : ΩY → F is defined in the proof.

First of all, we have to carefully formulate the state-
ment of this theorem in type theory. The naive thing to
do is to say that there is a sequence A : N → Set∗ and
maps f : (n : N)→ An+1 → An such that

A0 :≡ π0(Y ), A1 :≡ π0(X), A2 :≡ π0(F ),

and so forth. Continuing, this means that

A3n = πn(Y ), A3n+1 = πn(X), A3n+2 = πn(F ).

114



However, there is no way to make these equalities defi-
nitional, the elimination principle for the natural num-
bers does not allow for computation rules like that. This
means that the map f3n : A3n+1 → A3n cannot be com-
pared directly to πn(f) since the domain and codomain
are note definitionally equal. Setting things up this way
is possible, but makes reasoning about it unnecessarily
complicated. Instead, we change the indexing set, using
N×fin3 instead of N. We will work with a general notion
of sequences with a flexible choice of indexing set.

Definition 4.1.2. A successor structure is a type I with
endomap S : I → I called the successor. We will write
i + n for i : I and n : N to mean iterated application of
the successor function, i+ n :≡ Sn(i).

A chain complex indexed by a successor structure
I is a family of pointed sets A : I → Set∗ and maps
f : (i : I)→ Ai+1 → Ai with the property that (i : I)→
(a : Ai+2) → fi(fi+1(a)) = ai0 where ai0 is the basepoint
of Ai. We call a chain complex exact or a long exact
sequence if

(i : I)→ (a : Ai+1)→ fi(a) = ai0 → ‖(a′ : Ai+2)×fi+1(a′) = a‖.

A type-valued chain complex is the same, except that Ai
is only required to be a pointed type (not a pointed set).
A type-valued chain complex is exact or a type-valued
exact sequence if the above property holds without any
propositional truncation, i.e. if

(i : I)→ (a : Ai+1)→ fi(a) = ai0 → (a′ : Ai+2)×fi+1(a′) = a.

Remark 4.1.3. Note that a type-valued exact sequence
gives part of the structure of a fiber sequence. A fiber

115



sequence is a sequence where Ai+2 “is” the fiber of fi.
This means that (Ai+2, fi+1) = (fibfi , p1) for all i. Using
univalence this can be unpacked in an equivalence and
a commuting triangle. In a type-valued exact sequence
we just require two maps back and forth Ai+2 ↔ fibfi
such that the corresponding triangles commute, but we
do not require that these maps are mutual inverses. In
the text below we will have sequences that are not fiber
sequences, so we require this additional generality.
Example 4.1.4. Some useful examples of successor struc-
tures are (N, λn. n + 1) and (Z, λn. n + 1). Sequences
over these successor structures correspond to one-sided
and two-sided infinite sequences. We can also mimic one-
sided infinite sequences in the other direction using the
successor structure (N, λn. n − 1) (with the convention
that 0 − 1 = 0). This has the disadvantage that there
is one extra map A0 → A0. Whenever we use N as suc-
cessor structure in this section, we use λn. n + 1 as its
successor.

Furthermore, if N is a successor structure and k : N,
then we define a successor structure on N × fink+1 by
defining

S(n, i) :≡

(n+ 1, 0) if i = k

(n, i+ 1) otherwise

Note that n+ 1 is addition in the successor structure N .
We now build the long exact sequence of homotopy

groups in five steps. The order of these steps is some-
what arbitrary and can be altered. We perform the 0-
truncation of the sequence as the last step, so that the

116



intermediate sequences contain as much information as
possible.

(1) First we define the fiber sequence of f .

(2) Then we show that this sequence is equivalent to a
sequence involving iterated loop spaces.

(3) We fix some negation signs in the exact sequence.

(4) We index the sequence over N× fin3.

(5) We 0-truncate the sequence to obtain the sequence
in Theorem 4.1.1.

We first need some lemmas about fibers.

Lemma 4.1.5. Suppose given a pointed map f : A→∗ B.
Let p1 : fibf →∗ A be the first projection. Then there is a
pointed natural equivalence ef : fibp1 '∗ ΩB.

Furthermore, if q1 : fibp1 → fibf is the first projec-
tion, we get a commuting square

ΩA ΩB

fibq1 fibp1

−Ωf

ep1 ef

r1

where r1 is (also) the first projection. We write −Ωf for
the map Ωf ◦ (−)−1.

117



证明. The underlying equivalence is the following com-
posite

fibp1 ' ((a, p) : fibf )× a = a0

' (a : A)× a = a0 × f(a) = b0

' f(a0) = b0

' b0 = b0 ≡ ΩB

This equivalence sends ((a, p), q) : fibp1 (with p : fa = b0
and q : a = a0) to f−1

0 · f(q) · p. So there is a path

r(a, p, q) : ef ((a, p), q) = f−1
0 · f(q−1) · p.

This path satisfies r(a0, f0, 1) = 1 (equality is type correct
since ef ((a0, f0), q) ≡ f−1

0 · q). We also have e−1
f (p) =

((a0, f0 · p), 1) for p : ΩB.
Now e respects the basepoint, because

e(a0, f0, 1) = f−1
0 · f0 = 1.

We will not prove naturality here, since it is not required
for the results in this section. For the commuting square,
we will prove that

h : ef ◦ r1 ◦ e−1
p1 ∼

∗ −Ωf

For the underlying homotopy, we compute for p : ΩA

ef (r1(e−1
p1 p)) = ef (r1(((a0, f0), 1 · p), 1))

= ef ((a0, f0), p)
= f−1

0 · f(p−1) · f0 ≡ −Ωf(p).

To show that h respects the basepoint, suppose that
p ≡ 1. In that case, the first two steps of the above

118



equation becomes definitional equalities. Since we know
that r(a0, f0, 1) = 1, the last equality is also reflexivity.
Since the maps ef◦r◦e−1

p1 and−Ωf respect the basepoints
using the same path, this shows that h is a pointed ho-
motopy, which finishes the proof.

4.1.1.1 Step 1

Denote arrow∗ :≡ (X Y : U∗
i )×(X →∗ Y ). We define

F : arrow∗ → arrow∗ by F (X,Y, f) :≡ (fibf , X, p1). Given
a pointed map f : X →∗ Y , we define its fiber sequence
A : N → U by An :≡ p2(F n(X,Y, f)), and we define
fn : An+1 → An by p3(F n(X,Y, f)) (which is well-typed,
since An+1 ≡ p1(F n(X,Y, f)) by unfolding the definition
of F ). It is easy to show that (An, fn)n is a type-valued
exact sequence, since An+2 is (definitionally) the fiber of
fn.

Note that by Lemma 4.1.5 there is a pointed equiv-
alence ef : A3 '∗ ΩY . We define the diagonal map
δ :≡ p1 ◦ e−1

f : ΩY → fibf .

4.1.1.2 Step 2

Define the sequence B : N→ U and gn : Bn+1 → Bn

by

B0 :≡ Y

B1 :≡ X g0 :≡ f

B2 :≡ fibf g1 :≡ p1

Bn+3 :≡ ΩBn g2 :≡ δ

gn+3 :≡ −Ωgn

119



Note that g2 has the correct type, since A3 ≡ B3.
Now we can show that (B, g) is a type-valued exact

sequence by showing that it is equivalent to (A, f).
Lemma 4.1.6. There is a natural equivalence (An, fn)n '
(Bn, gn)n. This means that there are pointed equivalences
ηn : An '∗ Bn such that for all n : N we have

ηn ◦ fn ∼∗ gn ◦ ηn+1.

证明. We define the equivalence ηn by induction on n.
Note that Ak ≡ Bk for k = 0, 1, 2. Now suppose we have
an equivalence ηk : Ak ' Bk. Then by Lemma 4.1.5 we
have

Ak+3 ≡ fibfk+1

efk' ΩAk
Ωηk' ΩBk ≡ Bk+3.

We also show the naturality by induction on n.
For n ≡ 0 we have idY ◦ f ∼∗ f ◦ idX .
For n ≡ 1 we have idX ◦ p1 ∼∗ p1 ◦ idfibf .

For n ≡ 2 we have

idfibf ◦ p1 ≡ p1 ∼∗ (p1 ◦ e−1
f ) ◦ ef ∼∗ δ ◦ (ΩidY ◦ ef ).

Now suppose the naturality holds for k, then we get the
following diagram.

ΩBk+1 ΩBk

ΩAk+1 ΩAk

Ak+4 Ak+3

−Ωgk

Ωηk+1 Ωηk

−Ωfk

efk+1 efk

fk+3

120



The bottom square can be filled by the second part of
Lemma 4.1.5. The top square can be filled by applying
the functor Ω to the naturality for k and then noticing
that (−)−1 ◦ Ωηk ∼∗ Ωηk ◦ (−)−1, which is easily proven
for an arbitrary pointed map.

4.1.1.3 Step 3

We now remove the inverses in our sequence. More
precisely, we define a second sequence hn : Bn+1 → Bn

by

h0 :≡ f h1 :≡ p1 h2 :≡ δ hn+3 :≡ Ωhn.

To show that (B, h) is a type-valued exact sequence
we use the following lemma.

Lemma 4.1.7. Suppose N is a successor structure and
(B, g) is a type-valued exact sequence over N . Suppose
hn : Bn+1 →∗ Bn is another sequence of maps, and sup-
pose that there are pointed maps en, `n, rn : Bn →∗ Bn

such that en is an equivalence and the following diagrams
commute as homotopies (not necessarily pointed):

Bn+1

Bn+1 Bn

hn
en+1

gn

Bn+1 Bn

Bn+1 Bn

hn

`n+1 en

hn

Bn+1 Bn

Bn+1 Bn

hn

en+1 rn

hn

Then (B, h) is a type-valued exact sequence over N .

121



证明. First we need to show that for x : Bn+2 we have
hn(hn+1(x)) = bn0 . We compute

hn(hn+1(x)) = rn(hn(en+1(hn+1(x))))
= rn(gn(hn+1(x)))
= rn(gn(gn+1(e−1

n+2(x))))
= rn(bn0 )
= bn0 .

For exactness, suppose that y : Bn+1 such that hn(y) =
bn0 . Then gn(e−1

n+1(y)) = hn(y) = bn0 , therefore, by ex-
actness of g there (purely) exists an x : Bn+2 such that
gn+1(x) = e−1

n+1(y). Now we compute

hn+1(`n+2(en+2(x))) = en+1(hn+1(en+2(x)))
= en+1(gn+1(x))
= en+1(e−1

n+1(y))
= y.

This finishes the proof.

Lemma 4.1.8. The sequence (B, h) is a type-valued ex-
act sequence.

证明. We first define for k ≥ 2 we the pointed equiva-
lence εkn : Bn '∗ Bn by induction on n. For n ≤ k εkn :≡
id : Bn '∗ Bn we define εkn+3 :≡ −Ωεkn : Bn+3 '∗ Bn+3
for n + 3 > k. Now define en :≡ ε3

n and `n :≡ ε4
n and

rn :≡ ε2
n. We apply Lemma 4.1.7 using these equivalences

to obtain the desired result. To do this we need to check
three commuting triangles. We will check hn ◦ en+1 ∼ gn,
the other two proofs are similar. Apply induction on n.

122



For n = 0, 1, 2 it is trivial, reducing to gn ◦ id ∼ gn.
Suppose the homotopy is true for n = k. Then

hk+3◦ek+4 ≡ Ωhk◦−Ωek+1 ∼ −Ω(hk◦ek+1) ∼ −Ωgk ≡ gk+3.

4.1.1.4 Step 4

We now define a type-valued chain complex over N×
fin3, which has a successor structure by Example 4.1.4.
Let ρX be the equivalence Ωn+1X '∗ Ωn(ΩX). We now
define the sequence C : N× fin3 and kn : Cn+1 → Cn by

C(n,0) :≡ ΩnY k(n,0) :≡ Ωnf

C(n,1) :≡ ΩnX k(n,1) :≡ Ωnp1

C(n,2) :≡ Ωn fibf k(n,2) :≡ Ωnδ ◦ ρX

In a diagram, (C, k) looks like the following.

YXF

ΩYΩXΩF

Ω2YΩ2XΩ2F

...

f

p1

δ

Ωf

Ωp1

Ωδ

Ω2f

Ω2p1

There is an equivalence e : N ' N×fin3 that sends n to its
quotient and remainder when dividing n by 3. The proof
of the following lemma is straightforward and omitted.

123



Lemma 4.1.9. The sequence (B, h) is naturally equiva-
lent to (C, k) over the equivalence e. Therefore, (C, k) is
a type-valued exact sequence.

4.1.1.5 Step 5

If we 0-truncate the sequences at step 4, we get the
sequence (D, `) :≡ (‖C‖0, ‖k‖0). This is exactly the se-
quence in Theorem 4.1.1. It is now easy to show that
this is a long exact sequence.

Proof of Theorem 4.1.1. First note that it is a chain com-
plex by the following computation:

`n ◦ `n+1 ∼ ‖kn ◦ kn+1‖0 ∼ ‖0‖0 ∼ 0.

To show that it is exact, suppose given x : Dn+1 and
p : `n(x) = dn0 . We need to construct an element in a
proposition, so we may assume by induction that x ≡
|y|0. Now the type of p reduces to |kn(y)|0 = |cn0 |0, which
is equivalent to ‖kn(y) = cn0‖−1 by the characterization
of the identity type in truncations. Therefore, the latter
type is inhabited, and by induction, we may assume that
we have a path kn(y) = cn0 . By exactness of (C, k) we get
an element z : Cn+2 such that q : kn+1(z) = y. Now we
can find |z|0 : Dn+2 and the path ap|−|0(q) : `n+1(|z|0) =
x, showing exactness.

4.1.2 Computation of homotopy groups
An important application of the long exact sequence

of homotopy groups comes in combination with the Hopf
fibration. Combining these tools, we can compute more

124



homotopy groups of spheres. The Hopf fibration was con-
structed in [? , Theorem 8.5.1] and has been formalized
by Ulrik Buchholtz. We will not give the construction
here.

Theorem 4.1.10 (Hopf Fibration). There is a pointed
map S3 → S2 with fiber S1.

The quaternionic Hopf fibration has also been con-
structed in HoTT and formalized in Lean [? ]. This gives
a fibration S7 → S4 with fiber S3.

Corollary 4.1.11. π2(S2) = Z and πn(S3) = πn(S2) for
n ≥ 3.

证明. We know by the connectedness of spheres that
π1(S3) and π2(S3) are trivial, and by the truncatedness
of the circle that πk(S1) is trivial for k > 1 and Z for
k = 1. We now get the following long exact sequence,
from which the result immediately follows.

00Z

π2(S2)00

π3(S2)π3(S3)0

π4(S2)π4(S3)0

...

125



The last ingredient we need is the Freudenthal Sus-
pension Theorem. This has been formalized before by
Dan Licata in Agda, and our formalization is a direct
port of that proof to Lean. For the proof we refer to [? ,
Section 8.6].
Theorem 4.1.12 (Freudenthal Suspension Theorem).
Suppose that X is n-connected. Then ‖X‖2n ' ‖ΩΣX‖2n.

We can combine these results to compute the follow-
ing homotopy groups.
Corollary 4.1.13. πn(Sn) = Z and π3(S2) = Z
证明. Note that Sn is (n − 1)-connected. Therefore, by
the Freudenthal suspension theorem we have

‖Sn‖2(n−1) ' ‖ΩSn+1‖2(n−1).

For n ≥ 2 we have 2(n − 1) ≥ n, and therefore we also
have

‖Sn‖n ' ‖ΩSn+1‖n.
Taking the n-th homotopy group, we get

πn(Sn) ' πn+1(Sn+1).

Combining this with Corollary 4.1.11, we also get π3(S2) '
Z, as desired.

4.2 Eilenberg-MacLane Spaces
In this section we give an important equivalence

between groups and Eilenberg-MacLane spaces [? ].19

19Some of the contents of this section have been published in [?
]. The work in this section is joint work with Ulrik Buchholtz and
Egbert Rijke.

126



Eilenberg-MacLane space are play an important role in
homotopy theory, since they are spaces with simple ho-
motopy groups. Therefore, they can be used to build
up more complicated spaces with complicated homotopy
groups. Also, they can be used to define homology and
cohomology in HoTT, see Sections 5.4 and 5.5.

We prove in this section that the category of n-
connected (n + 1)-truncated pointed types is equivalent
to the category of groups for n = 0 and the category of
abelian groups for n ≥ 1.

If G is a (pre-)groupoid, the groupoid quotient is a
higher inductive type with constructors

HIT groupoid-quotient(G) :=
• i : G0 → groupoid-quotient(G);
• p : (x y : G0)→ hom(x, y)→ x = y;
• q : (x y z : G0)→ (g : hom(y, z))→ (f : hom(x, y))→
p(g ◦ f) = p(f) · p(g);
• ε : is-1-type(groupoid-quotient(G)).

The groupoid quotient can be constructed purely
from homotopy pushouts. The untruncated version was
constructed in Section 3.2. Then we can apply the 1-
truncated afterwards, and we can also construct trunca-
tions from homotopy pushouts [? ].

In [? ] the authors define Eilenberg-MacLane spaces.
We use the same approach as in that paper. We first
quickly review the results in that paper.

127



4.2.1 Construction of Eilenberg-MacLane
spaces

IfG is any group, the 1-dimensional Eilenberg-MacLane
space K(G, 1) can be defined by viewing G as a groupoid,
and taking the groupoid quotient of G. It is not hard to
see that K(G, 1) is 0-connected and 1-truncated. Using
an encode-decode proof, we can show that ΩK(G, 1) ' G

and that this equivalence sends concatenation to multi-
plication. Hence the composite π1K(G, 1) ' ‖G‖0 ' G

is a group isomorphism.
If G is abelian, the higher Eilenberg-MacLane spaces

can be defined recursively as

K(G,n+ 1) :≡ ‖ΣK(G,n)‖n+1

for n ≥ 1. This definition is slightly different than the one
given in [? ], where K(G,n+ 1) was defined using the it-
erated suspension as ‖ΣnK(G, 1)‖n+1. We chose to mod-
ify the definition, since a lot of properties of Eilenberg-
MacLane spaces are proven by induction on n, so it is
more convenient to have K(G,n + 1) defined directly in
terms of K(G,n).

It is easy to show that K(G,n) is (n− 1)-connected
and n-truncated. It is trickier to show that ΩK(G,n +
1) ' K(G,n). This is done separately for n = 1 and for
n ≥ 2.

For n = 1 we need the result that for every type
X with a coherent h-structure, the type ‖ΣX‖2 is a de-
looping of X, which means that Ω‖ΣX‖2 ' X. If G is
abelian, then K(G, 1) can be equipped with a coherent
h-structure, showing that ΩK(G, 2) ' K(G, 1).

128



For n ≥ 2, this can be done using the Freudenthal
suspension theorem, Theorem 4.1.12. Then the equiva-
lence follows from the following chain of equivalences:

ΩK(G,n+1) ≡ Ω‖ΣK(G,n)‖n+1 ' ‖ΩΣK(G,n)‖n ' ‖K(G,n)‖n ' K(G,n).

The Freudenthal Suspension Theorem is applied in the
third step, which is allowed since K(G,n) is (n − 1)-
connected and n ≤ 2(n− 1) for n ≥ 2.

This finishes the proof sketch that K-loop(G,n) :
ΩK(G,n+1) ' K(G,n). By induction, ΩnK(G,n+1) '
K(G, 1), hence we get the following group isomorphism
πn+1(K(G,n+ 1)) ' π1(K(G, 1)) ' G.

4.2.2 Uniqueness
In this section we prove that Eilenberg-MacLane

spaces are unique, which means that if X and Y are
both (n − 1)-connected, n-truncated pointed types such
that πn(X) ' πn(Y ), then X ' Y . Note that from these
assumptions one can show that πk(X) ' 1 ' πk(Y ) for
k < n since X and Y are (n− 1)-connected, but also for
k > n since X and Y are n-truncated. Hence from the
assumptions we actually have that πk(X) ' πk(Y ) for all
natural numbers k.

This is similar to Whitehead’s Theorem, which states
that if f : X → Y is a pointed map that induces an
equivalence on all homotopy groups, then f is an equiv-
alence. Whitehead’s Theorem is not true in general, but
it is true under the assumption that both X and Y are
n-truncated for some n. For the special case that X and
Y are both (n − 1)-connected and n-truncated one does

129



not need to find a map between X and Y to show that
they are equivalent, as long as they have isomorphic ho-
motopy groups.

We first give an elimination principle for K(G,n).

Definition 4.2.1. Suppose that X is an n-truncated
pointed type, and suppose that for some group G there
is an map ϕ : G→ ΩnX that sends multiplication to con-
catenation. Then there is a pointed map K-elim(ϕ, n) :
K(G,n)→ X.

Construction. We construct this by induction on n. For
n = 1 this follows directly from the induction princi-
ple of K(G, 1). For n = k + 1 > 1 we can define the
group homomorphism ϕ̃ as the composite G ϕ−→ Ωk+1X '
Ωk(ΩX), and apply the induction hypothesis to get a
map K-elim(ϕ̃, k) : K(G, k) →∗ ΩX. By the adjunction
Σ a Ω we get a pointed map ΣK(G, k) →∗ X, and by
the elimination principle of the truncation we get a map
K(G, k + 1) ≡ ‖ΣK(G, k)‖k+1 →∗ X.

Lemma 4.2.2. There is a pointed homotopy making the
following diagram commute.

K(G,n) ΩK(G,n+ 1)

ΩX

∼

K-elim(ϕ̃, n) Ω(K-elim(ϕ, n + 1))

证明. This follows by unwinding the definition of the
function K-elim(ϕ, n+ 1) in terms of K-elim(ϕ, n).

130



Lemma 4.2.3. The following diagram commutes.

ΩnK(G,n) G

ΩnX

∼

Ωn(K-elim(ϕ, n)) ϕ

证明. This follows by repeatedly applying Lemma 4.2.2.

Theorem 4.2.4. Suppose that X is an (n−1)-connected
n-truncated pointed type, and suppose that for some group
G there is an equivalence ϕ : G ' ΩnX that sends multi-
plication to concatenation. Then the map K-elim(ϕ, n) :
K(G,n)→ X is an equivalence. In particular this means
that if X is an (n−1)-connected n-truncated pointed type,
and there is a group isomorphism e : πn(X) ' G, then
X '∗ K(G,n).

证明. We apply Whitehead’s principle for truncated types.
This states that a weak equivalence (a map inducing an
isomorphism on all homotopy groups) between truncated
types is an equivalence. The proof can be found in [? ,
Theorem 8.8.3]. Since both K(G,n) and X are (n − 1)-
connected and n-truncated, the map K-elim(ϕ, n) triv-
ially induces an isomorphism on all homotopy groups for
all levels other than n. It also induces an isomorphism
on level n by Lemma 4.2.3. This finishes the proof.

Corollary 4.2.5. The type of (n−1)-connected, n-truncated
pointed types is equivalent to the type of groups for n = 1
and equivalent to the type of abelian groups for n ≥ 2.

131



证明. The maps back and forth are K(−, n) and πn.
The composites are homotopic to the identity map, since
πn(K(G,n)) ' G and K(πn(X), n) '∗ X (the last equiv-
alence comes from Theorem 4.2.4).

4.2.3 Equivalence of categories
Definition 4.2.6. If ϕ : G → H is a homomorphism
between groups, then there is a pointed map K(ϕ, n) :
K(G,n) → K(H,n). This action is functorial, i.e. it
respects composition and identity maps.

Construction. The functorial action comes from Definition 4.2.1.
We omit the proof of the other properties.

To show that we get the desired equivalence of cat-
egories, we need to fill the following naturality squares.
We will omit the proofs here.

πn(K(G,n)) πn(K(H,n))

G H

πn(K(ϕ, n))

∼

ϕ

∼

132



X Y

K(πn(X), n) K(πn(Y ), n)

f

∼

K(πn(f), n)

∼

These diagrams show the following result.

Theorem 4.2.7. K(−, n) is an equivalence from the cat-
egory of (n − 1)-connected n-truncated pointed types to
the category of groups (for n = 1) or abelian groups (for
n ≥ 2).

Remark 4.2.8. In particular this shows that the type of
pointed maps between two (n−1)-connected n-truncated
types is a set. This is a special case of the more general
fact that the type of pointed maps from an n-connected
type to a (n + k + 1)-truncated type is k-truncated (for
n ≥ −1).
Remark 4.2.9. It would be interesting, but a lot more
work, to do this one level up. In that case, it should
be possible to show that crossed modules or 2-groups
correspond to pointed connected 2-types. Furthermore,
pointed (n − 2) connected n-types should correspond to
braided 2-groups for n = 3 and to symmetric 2-groups
for n ≥ 4. A start of this project was given in [? ].

133



4.3 The Smash Product
In this section we will discuss the smash product

and its properties.20 The smash product has many uses
in homotopy theory. It can be used to define generalized
homology theory (see Section 5.5) and it is used to define
the cup product for cohomology [? , Section 5.1].

The goal is to prove that the smash product de-
fines a 1-coherent symmetric monoidal product on pointed
types [? , Definition 4.1.1], which we repeat in Definition 4.3.3.
Our proof strategy is to show that the smash product is
left adjoint to pointed maps and then use a Yoneda-style
argument to show that we get a 1-coherent symmetric
monoidal product.

This proof is known in 1-category theory [? , Chap-
ter 2, Theorem 5.3]. Suppose given a closed category21

C with internal hom [−,−] : Cop × C → C. Moreover
suppose that for every A,B : C the functor [A, [B,−]] :
C → C is representable as a C-enriched functor. This
means that there is an object A⊗B : C and a C-enriched
natural transformation [A ⊗ B,C] ∼= [A, [B,C]]. Then
C is a monoidal closed category. We will spell out the
precise formulation for pointed types in Definition 4.3.1,
where we will call U∗-enriched functors pointed functors
and U∗-enriched natural transformations pointed natural

20The work in this section is joint work with Stefano Piceghello.
Parts of this section are based on ideas from Robin Adams, Marc
Bezem, Ulrik Buchholtz and Egbert Rijke.

21A closed category is a category with internal hom-objects. We
can view pointed types as a higher closed category, where the inter-
nal hom-object is the type of pointed maps, pointed by the constant
map.

134



transformations.
In this section we will prove two main claims.

• We prove that A ∧ B represents the functor A→∗

B →∗ (−) on pointed types. In other words, that
we have a natural equivalence

(A ∧B →∗ C) '∗ (A→∗ B →∗ C).

• We prove that if we have a pointed natural equiva-
lence

(A ∧B →∗ C) '∗ (A→∗ B →∗ C),

then the smash product forms a 1-coherent sym-
metric monoidal product on pointed types.

There is still a gap in this argument: we still need to show
that the natural equivalence above is a pointed natural
equivalence. We did not manage to do this, because of
the high level of the path algebra involved, but we do not
expect theoretical difficulties.

In this section, all types, maps, homotopies and equiv-
alences are pointed, unless mentioned otherwise. We will
denote pointed homotopies using equalities in diagrams.
We will start with defining some categorical properties of
pointed types. We will use the notation established in
Section 2.2.5.

4.3.1 The Category of Pointed Types
Definition 4.3.1. Suppose we are given F : U∗ → U∗.
We say that F is a 1-coherent functor if

135



• F acts on pointed maps: given f : A → A′, there
is a pointed map Ff : F (A)→ F (A′);

• it respects identities: F (idA) ∼ idFA;

• it respects composition: F (f ′ ◦ f) ∼ Ff ′ ◦ Ff.

We will call a 1-coherent functor a functor for short.22

We say that a functor F is a pointed functor if moreover
F1 = 1, where 1 is the unit type (which is the zero
object in pointed types). In this case we can show that
F (0A,B) = 0FA,FB, where 0A,B is the constant map.

Let F , G be functors of pointed types and suppose
that θ is a family of pointed maps (X : U∗) → F (X) →
G(X). We say that θ is a (1-coherent) natural trans-
formation or natural if for every f : A → B there is a
diagram:

F (A) F (B)

G(A) G(B)

F (f)

θA θB

G(f)

That is, a pointed homotopy

pθ(f) : θB ◦ F (f) ∼ G(f) ◦ θA.

We say that θ is pointed natural if θ is natural and
pθ(0) = (pθ)0, where

(pθ)0 : G(0) ◦ θA ∼ 0 ◦ θA ∼ 0 ∼ θB ◦ 0 ∼ θB ◦ F (0)
22While this is an abuse of terminology, it will not cause confusion

in practice. Note that internally in the language of HoTT it is an
open problem whether we can even formulate the type of fully
coherent functors.

136



is the canonical proof of the pointed homotopy G(0) ◦
θA ∼ θB ◦ F (0).

For n-ary functions F : U∗ → · · · → U∗ we define
functoriality similarly. We say that transformations be-
tween n-ary functors are natural if they are natural in all
arguments.

Remark 4.3.2. We could define a notion of weak natural-
ity, which is like naturality, but where the homotopy is
not required to be pointed. However, this is generally
ill-behaved. For example, if θ is weakly natural, neither
X → θ nor θ → X needs to be weakly natural.

Definition 4.3.3. A 1-coherent symmetric monoidal prod-
uct for pointed types is a binary operation ⊗ : U∗ →
U∗ → U∗ that is functorial. Explicitly, this means that

• Given f : A → A′ and g : B → B′, there is a map
f ⊗ g : A⊗B → A′ ⊗B.

• It respects identities: idA⊗ idB ∼ idA⊗B .

• It respects composition: (f ′ ◦ f)⊗ (g′ ◦ g) ∼ (f ′ ⊗
g′) ◦ (f ⊗ g).

Furthermore, there is a pointed type I and natural equiv-
alences

• α : (A ⊗ B) ⊗ C ' A ⊗ (B ⊗ C) (associativity of
the smash product);

• λ : I ⊗B ' B (left unitor for the smash product);

• γ : A⊗B ' B⊗A (braiding for the smash product).

137



With pointed homotopies filling the following three dia-
grams.

((A⊗B)⊗ (C ⊗D))

(((A⊗B)⊗ C)⊗D) (A⊗ (B ⊗ (C ⊗D)))

((A⊗ (B ⊗ C))⊗D) (A⊗ ((B ⊗ C)⊗D))

αα

α⊗D

α

A⊗α

((I ⊗ A)⊗B) (I ⊗ (A⊗B))

(A⊗B)

α

λ⊗B λ

((A⊗B)⊗ C) (A⊗ (B ⊗ C)) ((B ⊗ C)⊗ A)

((B ⊗ A)⊗ C)) (B ⊗ (A⊗ C)) (B ⊗ (C ⊗ A))

α

γ⊗C

γ

α

α B⊗γ

We have a version of the Yoneda Lemma for pointed
types.

Lemma 4.3.4 (Yoneda). Let A, B be pointed types, and
assume, for all pointed types X, a pointed equivalence
ϕX : (B → X) ' (A → X), natural in X, i.e. for all
f : X → X ′ there is a homotopy

pϕ(f) : (A→ f) ◦ ϕX ∼ ϕ′
X ◦ (B → f)

Then there exists a pointed equivalence ψϕ : A ' B.

138



证明. We define ψϕ :≡ ϕB(idB) : A → B and ψ−1
ϕ :≡

ϕ−1
A (idA). The given naturality square for X :≡ B and
g :≡ ψ−1

ϕ yields ψ−1
ϕ ◦ ϕB(idB) ≡ ψ−1

ϕ ◦ ψϕ ∼ ϕA(ψ−1
ϕ ◦

idB) ≡ ϕA(ϕ−1
A (idA)) ∼ idA, and similarly for the inverse

composition.

Lemma 4.3.5. Assume A, B, ϕX and p as in Lemma 4.3.4,
and assume moreover that ϕX is pointed natural. Then
there is a pointed homotopy (ψϕ → X) ∼ ϕX .

证明. Let f : B → X. The underlying homotopy is
obtained by:

(ψϕ → X)(f) ≡ f ◦ ψϕ
∼ ϕX(f ◦ id) (by pϕ(f)(id))
∼ ϕX(f) (by apϕX (uf ))

To show that this is a pointed homotopy, we need to
prove that the following diagram commutes:

(ψϕ → X)(0) ϕX(0)

0

pϕ(0)(id)·apϕX (u0)

zψϕ (ϕX)0

where the top-left expression is definitionally equal to
0◦ϕX(id), the horizontal path comes from the underlying
homotopy and (ϕX)0 is the canonical path from ϕX(0) to
0. Since ϕX is pointed natural, we have that pϕX (0)(id) =
(pϕX )0(id), which is the concatenation:

0 ◦ ϕX(id) = 0 (by zqX(id))
= ϕX(0) (by (ϕX)−1

0 )
= ϕX(0 ◦ 1) (by (apϕX (zid))−1)

139



The diagram then commutes by cancellation of inverses
and using that zid = u0.

4.3.2 Basic Properties of the Smash Prod-
uct

Definition 4.3.6. The smash of A and B is the HIT
generated by the point constructor (a, b) for a : A and
b : B and two auxiliary points auxl, auxr : A∧B and path
constructors gluela : (a, b0) = auxl and gluerb : (a0, b) =
auxr (for a : A and b : B). A ∧ B is pointed with point
(a0, b0).

Remark 4.3.7. This definition of A ∧ B is basically the
pushout of 2 ← A + B → A × B. A more traditional
definition of A ∧B is the pushout 1← A ∨B → A×B;
here ∨ denotes the wedge product, which can be equiv-
alently described as either the pushout A ← 1 → B

or 1 ← 2 → A + B. These two definitions of A ∧ B
are equivalent, because in the following diagram the top-
left square and the top rectangle are pushout squares,
hence the top-right square is a pushout square by ap-
plying the pushout lemma. Another application of the
pushout lemma then states that the two definitions of
A ∧B are equivalent.

2 A+B 2

1 A ∨B 1

A×B A ∧B

140



Lemma 4.3.8. The smash product is functorial: if f :
A → A′ and g : B → B′, then f ∧ g : A ∧ B → A′ ∧ B′.
We write A ∧ g or f ∧ B if one of the functions is the
identity function. Moreover, if p : f ∼ f ′ and q : g ∼ g′,
then p ∧ q : f ∧ g ∼ f ′ ∧ g′; this operation preserves
reflexivities, symmetries and transitivies. We will write
p ∧ g or f ∧ q if one of the homotopies is reflexivity.

Lemma 4.3.9. The smash product preserves composi-
tion, which gives rise to the interchange law:

i : (f2 ◦ f1) ∧ (g2 ◦ g1) ∼ f2 ∧ g2 ◦ f1 ∧ g1

for maps A1
f1−→ A2

f2−→ A3 and B1
g1−→ B2

g2−→ B3.

证明. Let us denote the basepoints of Ai and Bi with ai
and bi respectively. We first apply induction on the paths
that all the maps in the statement respect the basepoint.
We verify the underlying homotopy of i by induction on
terms x of the domain A1 ∧B1 of the two maps; this can
be defined on point constructors (a, b), auxl and auxr to
be the identity path. If x varies over gluela, we need to
fill the following square:

(f2(f1(a)), b3) (f2(f1(a)), b3)

auxl auxl

1

ap(f2◦f1)∧(g2◦g1)(gluela) apf2∧g2◦f1∧g1 (gluela)

1
(4.3.10)

This reduces to proving that

ap(f2(f1(a)),−)(g2◦g1)0·gluelf2(f1(a)) = ap(f2(f1(a)),−)(apg2(g1)0·(g2)0)·gluelf2(f1(a))

141



Since we assumed that (g1)0 and (g2)0 are the identity
path, the claim is easily verified. The case for x varying
over gluerb is entirely analogous, giving the square:

(a3, g2(g1(b)) (a3, g2(g1(b))

auxr auxr

1

ap(f2◦f1)∧(g2◦g1)(gluerb) apf2∧g2◦f1∧g1 (gluerb)

1
(4.3.11)

The resulting homotopy is pointed, as i(a1, b1) ≡ 1 and
the proofs that the two maps respect the basepoint are
assumed to be the identity path.

Lemma 4.3.12. There are homotopies

tg : 0 ∧ g ∼ 0 t′f : f ∧ 0 ∼ 0

such that the following diagrams commute for given ho-
motopies p : g ∼ g′ and q : f ∼ f ′.

0 ∧ g 0 ∧ g′ f ∧ 0 f ′ ∧ 0

0 0

1∧p

tg tg′

q∧1

t′f t′
f ′

(4.3.13)

证明. We will define the homotopy tg : 0 ∧ g, with 0 :
A1 → A2 and g : B1 → B2 (with the notational conven-
tion for the basepoints as in Lemma 4.3.9); the definition
for t′f is analogous. First, we apply induction on the path
that g respects the basepoint. The underlying homotopy
of tg is given by induction on terms x : A1∧B1. On point

142



constructors, we define:

tg(a, b) :≡ gluerg(b) · gluer−1
b2

: (a2, g(b)) = (a2, b2)
tg(auxl) :≡ gluel−1

a2
: auxl = (a2, b2)

tg(auxr) :≡ gluer−1
b2

: auxr = (a2, b2)

If x varies over gluela, after some reductions, we need to
fill the following square:

(a2, g(b1)) (a2, b2)

auxl (a2, b2)

gluerb2 · gluer−1
b2

gluela2 1

gluel−1
a2

(4.3.14)

Similarly, if x varies over gluerb, we need to fill the follow-
ing square:

(a2, g(b)) (a2, b2)

auxr (a2, b2)

gluerg(b) · gluer−1
b2

gluerg(b) 1

gluer−1
b2

(4.3.15)

The squares in (4.3.14) and (4.3.15) can both be filled by
simple path algebra. The resulting homotopy is pointed,
as tg(a1, b1) is equal to the identity path and the proof
that g respects the basepoint is also assumed to be the
identity path. Finally, for p : g ∼ g′, the diagram on the
left in (4.3.13) commutes by induction on p.

Lemma 4.3.16. Suppose that we have maps A1
f1−→ A2

f2−→
A3 and B1

g1−→ B2
g2−→ B3 and suppose that either f1 or f2

143



is constant. Then there are two homotopies (f2◦f1)∧(g2◦
g1) ∼ 0, one of which uses the interchange law and one
that does not. These two homotopies are equal. Specifi-
cally, the following two diagrams commute:

(f2 ◦ 0) ∧ (g2 ◦ g1) (f2 ∧ g2) ◦ (0 ∧ g1)

(f2 ∧ g2) ◦ 0

0 ∧ (g2 ◦ g1) 0

i

z′∧(g2◦g1)

(f2∧g2)◦tg1

z′

tg2◦g1

(0 ◦ f1) ∧ (g2 ◦ g1) (0 ∧ g2) ◦ (f1 ∧ g1)

0 ◦ (f1 ∧ g1)

0 ∧ (g2 ◦ g1) 0

i

z∧(g2◦g1)

tg2 ◦(f1∧g1)

z

tg2◦g1

证明. We start by filling the diagram on the left. First
apply induction on the paths that f2, g1 and g2 respect
the basepoint. In this case f2 ◦0 is definitionally equal to
0, and the canonical proof that f2 ◦ 0 ∼ 0 is (definition-
ally) equal to reflexivity. This means that the homotopy
(f2 ◦ 0) ∧ (g2 ◦ g1) ∼ 0 ∧ (g2 ◦ g1) is also equal to reflexiv-
ity, and also the path that f2 ∧ g2 respects the basepoint
is reflexivity, hence the homotopy (f2 ∧ g2) ◦ 0 ∼ 0 is
also reflexivity. This means we need to fill the following
square:

144



(f2 ◦ 0) ∧ (g2 ◦ g1) (f2 ∧ g2) ◦ (0 ∧ g1)

0 ∧ (g2 ◦ g1) 0

i

1 (f2∧g2)◦tg1

tg1◦g2

For the underlying homotopy, take x : A1 ∧ B1 and ap-
ply induction on x. Suppose x ≡ (a, b) for a : A1 and
b : B1. With the notational convention for basepoints
as in Lemma 4.3.9, we have to fill the square (we use
that the paths that the maps respect the basepoints are
reflexivity):

(a3, g2(g1(b))) (a3, g2(g1(b)))

(a3, g2(g1(b))) (a3, b3)

1

1 apf2∧g2 (gluerg1(b) · gluer−1
b2

)

gluerg2(g1(b)) · gluer−1
b3

(4.3.17)
Now aph∧k(gluerz) = gluerk(z), so by general groupoid
laws we see that the path on the bottom is equal to the
path on the right, which means we can fill the square.
For the other point constructors, the squares to fill are
similar. If x ≡ auxl, we have:

auxl auxl

auxl (a3, b3)

1

1 apf2∧g2 (gluel−1
a2 )

gluel−1
a3

(4.3.18)

We can fill this square, as the path on the bottom is
definitionally equal to gluel−1

a3 (as we applied path in-
duction on the path that f2 respects the basepoint) and

145



the path on the right also reduces to gluel−1
a3 using that

aph∧k(gluelz) = gluelh(z). Similarly, we can fill the square
for x ≡ auxr, which is:

auxr auxr

auxr (a3, b3)

1

1 apf2∧g2 (gluer−1
b2

)

gluer−1
b3

(4.3.19)

If x varies over gluela, after some reductions, we need
to fill the following cube, where the front and the back
are the squares in (4.3.17) for (a, b1) and (4.3.18) respec-
tively; the left square is degenerate; the other three sides
are the squares in the definition of i and t to show that
they respect gluela (given in (4.3.10) and (4.3.14) respec-
tively), where we also apply f2 ∧ g2 to the square on the
right. We suppress in the diagram the arguments of gluer
in gluer · gluer−1 (which match, so the concatenation re-
sults equal to the identity path).

auxl auxl

(a3, b3) (a3, b3)

auxl (a3, b3)

(a3, b3) (a3, b3)

1

1

apf2∧g2 (gluel−1
a2 )

gluela3

1

1

apf2∧g2 (gluela2 )

gluel−1
a3gluela3

gluer · gluer−1

1

apf2∧g2 (gluer · gluer−1)

(4.3.20)
Similarly, if x varies over gluerb, we need to fill the cube
below: the front and the back are the squares in (4.3.17)

146



for (a1, b) and (4.3.19) respectively; the left square is
again degenerate; the other three sides come from the
fact that i and t respect gluerb (given in (4.3.11) and
(4.3.15) respectively). Again, we omit the arguments of
gluer in gluer · gluer−1 (in this case, not a priori judgmen-
tally equal).

auxr auxr

(a3, g2(g1(b))) (a3, g2(g1(b)))

auxr (a3, b3)

(a3, g2(g1(b))) (a3, b3)

1

1

apf2∧g2 (gluer−1
b2

)1

1

gluerg2(g1(b)) apf2∧g2 (gluerg1(b))

gluer−1
b3

gluer · gluer−1

gluerg2(g1(b))

apf2∧g2 (gluer · gluer−1)

1

(4.3.21)
In order to fill the cubes in (4.3.20) and (4.3.21), we gen-
eralize the paths and fill the cubes by path induction.
The cube in (4.3.20) can be generalized to a cube:

h(y) h(y)

h(x) h(x)

h(y) h(x)

h(x) h(x)

1

1

aph(p−1
l

)
1

1

ql aph(pl)

q−1
l

qr·q−1
r

ql

aph(pr·p−1
r )

1

147



for X and X ′ pointed types; a map h : X → X ′; terms
x, y z : X; paths pl : x = y, pr : x = z, ql : h(x) = h(y),
qr : h(x) = h(z); and 2-paths sl : aph(pl) = ql (for the
back and the top) and sr : aph(pr) = qr (for the right
side). This cube is filled by path induction on sl, sr,
pl and pr. The cube in (4.3.21) can be generalized to a
similar cube:

h(y) h(y)

h(x) h(x)

h(y) h(z)

h(x) h(z)

1

1

aph(pb)
1

1

ql aph(pl)

qb

ql·qb

ql

aph(pl·pb)

1

for paths pl : x = y, pb : y = z, ql : h(x) = h(y),
qb : h(y) = h(z) and for 2-paths sl : aph(pl) = ql (for the
top) and sb : aph(pb) = qb (for the back).

The diagram on the right is similar to the previous
case. It is not hard to show that these homotopies are
pointed.

Theorem 4.3.22. Given pointed types A, B and C, the
functorial action of the smash product induces a map

(−) ∧ C : (A→ B)→ (A ∧ C → B ∧ C)

that is natural in A and B and dinatural in C.

148



The naturality and dinaturality means that the fol-
lowing squares commute for f : A′ → A g : B → B′ and
h : C → C ′.

(A→ B) (A ∧ C → B ∧ C)

(A′ → B) (A′ ∧ C → B ∧ C)

(−)∧C

f→B f∧C→B∧C
(−)∧C

(A→ B) (A ∧ C → B ∧ C)

(A→ B′) (A ∧ C → B′ ∧ C)

(−)∧C

A→g A∧C→g∧C
(−)∧C

(A→ B) (A ∧ C → B ∧ C)

(A ∧ C ′ → B ∧ C ′) (A ∧ C → B ∧ C ′)

(−)∧C

(−)∧C′ A∧C→B∧h
A∧h→B∧C′

证明. First note that λf. f ∧ C preserves the basepoint
so that the map is indeed pointed.

Let k : A → B. Then as homotopy the naturality
in A becomes (k ◦ f) ∧ C = k ∧ C ◦ f ∧ C. To prove an
equality between pointed maps, we need to give a pointed
homotopy, which is given by interchange. To show that
this homotopy is pointed, we need to fill the following
square (after reducing out the applications of function
extensionality), which follows from Lemma 4.3.16.

149



(0 ◦ f) ∧ C (0 ∧ C) ◦ (f ∧ C)

0 ◦ (f ∧ C)

0 ∧ C 0
The naturality in B is almost the same: for the underly-
ing homotopy we need to show i : (g◦k)∧C = g∧C◦k∧C.
For the pointedness we need to fill the following square,
which follows from the left pentagon in Lemma 4.3.16.

(g ◦ 0) ∧ C (g ∧ C) ◦ (0 ∧ C)

(g ∧ C) ◦ 0

0 ∧ C 0
The dinaturality in C is a bit harder. For the un-

derlying homotopy we need to show B ∧ h ◦ k ∧ C =
k ∧ C ′ ◦ A ∧ h. This follows from applying interchange
twice:

B∧h◦k∧C ∼ (idB◦k)∧(h◦idC) ∼ (k◦idA)∧(idC′◦h) ∼ k∧C ′◦A∧h.

To show that this homotopy is pointed, we need to fill

150



the following square:

B ∧ h ◦ 0 ∧ C (idB ◦ 0) ∧ (h ◦ idC) (0 ◦ idA) ∧ (idC′ ◦ h) 0 ∧ C ′ ◦ A ∧ h

B ∧ h ◦ 0 0 ∧ (h ◦ idC) 0 ∧ (idC′ ◦ h) 0 ◦ A ∧ h

B ∧ h ◦ 0 0 0 0

The left and the right squares are filled by Lemma 4.3.16.
The squares in the middle are filled by (corollaries of)
Lemma 4.3.8.

4.3.3 Adjunction
Lemma 4.3.23. There is a unit ηA,B ≡ η : A → B →
A∧B natural in A and counit εB,C ≡ ε : (B → C)∧B →
C dinatural in B and natural in C. These maps satisfy
the unit-counit laws:

(A→ εA,B)◦ηA→B,A ∼ idA→B εB,B∧C◦ηA,B∧B ∼ idA∧B.

Note: η is also dinatural in B, but we do not need
this.

证明. We define ηab = (a, b). We define the path that
ηa respects the basepoint as

(ηa)0 :≡ gluela · gluel−1
a0

: (a, b0) = (a0, b0).

Also, η itself respects the basepoint. To show this, we
need to give η0 : η(a0) ∼ 0. The underlying maps are
homotopic, by

η0b :≡ gluerb · gluer−1
b0

: (a0, b) = (a0, b0).

151



To show that this homotopy is pointed, we need to show
that the two given proofs of (a0, b0) = (a0, b0) are equal,
but they are both equal to reflexivity:

η00 : gluela0 · gluel−1
a0 = 1 = gluerb0 · gluer−1

b0 .

This defines the unit. To show that it is natural in A,
we need to give the following pointed homotopy pη(f) for
f : A→ A′.

A (B → A ∧B)

A′ (B → A′ ∧B)

η

f B→f∧B
η

We may assume that f0 is reflexivity. For the underly-
ing homotopy we need to define for a : A that pη(f, a) :
η(fa) ∼ f ∧B ◦ ηa, which is another pointed homotopy.
For b : B we have η(fa, b) ≡ (fa, b) ≡ (f ∧B)(ηab). The
homotopy pη(f, a) is pointed, since

(f∧B◦ηa)0 = apf∧B(gluela · gluel−1
a0 ) = gluelfa · gluel−1

a′
0

= (η(fa))0.

Now we need to show that pη(f) is pointed, for which we
need to fill the following diagram.

η(fa0) f ∧B ◦ ηa0

0B,A′∧B

pη(f,a0)

η0

f∧B◦η0

These pointed homotopies have equal underlying homo-
topies, since for b : B we have

pη(f, a0, b)·apf∧B(η0b) = 1·apf∧B(gluerb · gluer−1
b0 ) = gluerb · gluer−1

b0 = η0b.

152



We will skip the proof that these homotopies respect the
point in the same way.

To define the counit, given x : (B → C) ∧ B, we
construct ε(x) : C by induction on x. If x ≡ (f, b), we
set ε(f, b) :≡ f(b). If x is either auxl or auxr, then we
set ε(x) :≡ c0 : C. If x varies over gluelf , then we need
to show that f(b0) = c0, which is true by f0. If x varies
over gluerb, we need to show that 0(b) = c0 which is true
by reflexivity. Now ε0 :≡ 1 : ε(0B,C , b0) = c0 shows that
ε is pointed.

We will skip the proof that the counit is dinatural
in B and natural in C.

Finally, we need to show the unit-counit laws. For
the underlying homotopy of the first one, let f : A →
B. We need to show that pf : ε ◦ ηf ∼ f . We define
pf (a) = 1 : ε(f, a) = f(a). To show that pf is a pointed
homotopy, we need to show that pf (a0)·f0 = apε(ηf)0 ·ε0,
which reduces to f0 = apε(gluelf · gluel−1

0 ), but we can
reduce the right hand side: (note: 00 denotes the proof
that 0(a0) = b0, which is reflexivity)

apε(gluelf · gluel−1
0 ) = apε(gluelf )·(apε(gluel0))−1 = f0·0−1

0 = f0.

Now we need to show that p itself respects the basepoint
of A→ B, i.e. that the composite ε ◦ η(0) ∼ ε ◦ 0 ∼ 0 is
equal to p0A,B . The underlying homotopies are the same
for a : A; on the one side we have apε(gluera · gluer−1

a0 )
and on the other side we have reflexivity (note: this type
checks since 0A,Ba ≡ 0A,Ba0). These paths are equal,
since

apε(gluera · gluer−1
a0 ) = apε(gluera)·(apε(gluera0))−1 = 1·1−1 ≡ 1.

153



Both pointed homotopies are pointed in the same way,
which requires some path-algebra, and we skip the proof
here.

For the underlying homotopy of the second unit-
counit law, we need to show for x : A ∧ B that q(x) :
ε((η ∧ B)x) = x, which we prove by induction to x. If
x ≡ (a, b), then we can define q(a, b) :≡ 1(a,b). If x is auxl
or auxr, then the left-hand side reduces to (a0, b0), so we
can define q(auxl) :≡ gluela0 and q(auxr) :≡ gluerb0 . The
following computation shows that q respects gluela:

apε◦η∧B(gluela) · gluela0 = apε(gluelηa) · gluela0 = (ηa)0 · gluela0 = gluela · gluel−1
a0 · gluela0

= gluela .

To show that it respects gluerb we compute

apε◦η∧B(gluerb) · gluerb0 = apε(−,b)(η0) · apε(gluerb) · gluerb0 = apλf. fb(η0) · gluerb0

= η0b · gluerb0 = gluerb .

To show that q is a pointed homotopy, we need to show
that (ε ◦ η ∧B)0 = 1, For this we compute

(ε ◦ η ∧B)0 = apε(−,b0)(η0) = η0b0 = gluerb0 · gluer−1
b0 = 1.

Definition 4.3.24. The function e ≡ eA,B,C : (A →
B → C)→ (A ∧B → C) is defined as the composite

(A→ B → C) (−)∧B−−−−→ (A∧B → (B → C)∧B) A∧B→ε−−−−→ (A∧B → C).

Lemma 4.3.25. The function e is invertible, hence gives
a pointed equivalence

(A→ B → C) ' (A ∧B → C).

154



证明. Define

e−1
A,B,C : (A∧B → C) B→(−)−−−−→ ((B → A∧B)→ (B → C)) η→(B→C)−−−−−−→ (A→ B → C).

It is easy to show that e and e−1 are inverses as unpointed
maps from the unit-counit laws (Lemma 4.3.23) and nat-
urality of η and ε.

Lemma 4.3.26. The function e is natural in A, B and
C.

证明. Naturality of e in A. Suppose that f : A′ → A.
Then the following diagram commutes. The left square
commutes by naturality of (−)∧B in the first argument
and the right square commutes because composition on
the left commutes with composition on the right.

(A→ B → C) (A ∧B → (B → C) ∧B) (A ∧B → C)

(A′ → B → C) (A′ ∧B → (B → C) ∧B) (A′ ∧B → C)

(−)∧B

f→B→C

A∧B→ε

f∧B→··· f∧B→C

(−)∧B A∧B→ε

Naturality of e in C. Suppose that f : C → C ′.
Then in the following diagram the left square commutes
by naturality of (−)∧B in the second argument (applied
to B → f) and the right square commutes by applying
the functor A ∧ B → (−) to the naturality of ε in the
second argument.

(A→ B → C) (A ∧B → (B → C) ∧B) (A ∧B → C)

(A→ B → C ′) (A ∧B → (B → C ′) ∧B) (A ∧B → C ′)

155



Naturality of e in B. Suppose that f : B′ → B.
Here the diagram is a bit more complicated, since (−)∧B
is dinatural (instead of natural) in B. Then we get the
following diagram. The front square commutes by nat-
urality of (−) ∧ B in the second argument (applied to
f → C). The top square commutes by naturality of
(−)∧B in the third argument, the back square commutes
because composition on the left commutes with composi-
tion on the right, and finally the right square commutes
by applying the functor A ∧ B′ → (−) to the naturality
of ε in the first argument.

(A ∧B → (B → C) ∧B) (A ∧B′ → (B → C) ∧B)

(A→ B → C) (A ∧B′ → (B → C) ∧B′)

(A ∧B → C) (A ∧B′ → C)

(A→ B′ → C) (A ∧B′ → (B′ → C) ∧B′)

Remark 4.3.27. Instead of showing that e is natural, we
could show that e−1 is natural. In that case we need to
show that the map A → (−) : (B → C) → (A → B) →
(A → C) is natural in A, B and C. This might actually
be easier, since we do not need to work with any higher
inductive type to prove that.

We have now obtained the following theorem

156



Theorem 4.3.28. There is an equivalence

(A→ B → C) ' (A ∧B → C)

natural in A, B and C.

Remark 4.3.29. We can state Theorem 4.3.28 as an ad-
junction (−) ∧ B a B → (−) or by saying that A ∧ B
represents the functor A→ B → (−).

In Section 4.3.4 we show that the smash product
forms a 1-coherent symmetric monoidal product from the
assumption that this adjunction is pointed in C. Explic-
itly, this means that the naturality of e in C applied to
the map 0C,C′ : C → C ′ is equal to the composite

(A∧B → 0C,C′)◦eA,B,C ∼ 0◦eA,B,C ∼ 0 ∼ eA,B,C′◦0 ∼ eA,B,C′◦(A→ B → 0C,C′).

To prove this, we need that the counit ε is pointed
natural in C. To prove that, we need to show that the
map (−) ∧ C, defined in Theorem 4.3.22, is pointed nat-
ural in B. In order to prove that, we need to show
that in the situation of Lemma 4.3.16, if both f1 and
f2 are (judgmentally) the constant map, then the two
pentagons stated in that lemma are equal (transported
appropriately in order to make this equality type check).
This can be formulated as a 3-path in a type of pointed
maps, which is hard to fill.

4.3.4 Symmetric monoidal product
In this section we will prove that the smash product

is a 1-coherent symmetric monoidal product Definition 4.3.3,
from the assumption that the adjunction from Section 4.3.3

157



is pointed natural in C. We will need to following pointed
equivalences. Without the proof that e is pointed natu-
ral, parts of this section are still true. In particular, the
natural equivalences defined in Definition 4.3.33 do not
require pointed naturality of e.
Definition 4.3.30. We define the pointed equivalences:

b : (S0 → X) ' X

where S0 is the type of booleans (pointed in 02) with
underlying map defined with b(f) :≡ f(12), and

tw : (A→ B → X) ' (B → A→ X)

with underlying map defined with tw(f) :≡ λb. λa. f(a)(b).
Using Lemma 4.3.4 (Yoneda) we can prove associa-

tivity, left and right unitality and braiding equivalences
for the smash product, in the following way.
Definition 4.3.31. The following pointed equivalences
are defined for A, B, C and X pointed types:

• αX : (A ∧ (B ∧ C)→ X) ' ((A ∧B) ∧ C → X) as
the composition of the equivalences:

A ∧ (B ∧ C)→ X ' A→ B ∧ C → X (e−1)
' A→ B → C → X (A→ e−1)
' A ∧B → C → X (e)
' (A ∧B) ∧ C → X. (e)

• λX : (B → X) ' (S0∧B → X) as the composition
of the equivalences:

B → X ' S0 → B → X (b−1)
' S0 ∧B → X (e)

158



• ρX : (A→ X) ' (A ∧ S0 → X) as the composition
of the equivalences:

A→ X ' A→ S0 → X (A→ b−1)
' A ∧ S0 → X (e)

• γX : (B ∧ A → X) ' (A ∧ B → X) as the compo-
sition of the equivalences:

B ∧ A→ X ' B → A→ X (e−1)
' A→ B → X (tw)
' A ∧B → X (e)

Remark 4.3.32. The equivalences in Definition 4.3.31 are
natural in all their arguments and from the assumption
that e is pointed natural in C we can show that these
maps are all pointed natural in X.

Definition 4.3.33. We define the following equivalences,
natural in all their arguments, with inverses provided as
in Lemma 4.3.4:

• α :≡ αA∧(B∧C)(id) : (A ∧ B) ∧ C ' A ∧ (B ∧ C)
(associativity of the smash product), with inverse
α−1 :≡ α−1

(A∧B)∧C(id);

• λ :≡ λB(id) : S0 ∧ B ' B and ρ :≡ ρA(id) : A ∧
S0 ' A (left- and right unitors for the smash prod-
uct), with inverses λ−1 :≡ λ

−1
S0∧B(id) and ρ−1 :≡

ρ−1
A∧S0(id), respectively;

• γ :≡ γB∧A(id) : A ∧ B ' B ∧ A (braiding for the
smash product), with inverse γ−1 :≡ γ−1

A∧B(id).

159



α, λ, ρ and γ are natural in all their arguments, as α, λ,
ρ and γ are. Note that these definitions do not require
pointed naturality of e.

Lemma 4.3.34. There are pointed homotopies

αX ∼ α→ X λX ∼ λ→ X

ρX ∼ ρ→ X γX ∼ γ → X

证明. This follows directly from Lemma 4.3.5 and Remark 4.3.32
(this does require pointed naturality of e).

Theorem 4.3.35 (Associativity pentagon). For A, B,
C and D pointed types, there is a homotopy

α ◦ α ∼ (A ∧ α) ◦ α ◦ (α ∧D)

corresponding to the commutativity of the following dia-
gram:

((A ∧B) ∧ (C ∧D))

(((A ∧B) ∧ C) ∧D) (A ∧ (B ∧ (C ∧D)))

((A ∧ (B ∧ C)) ∧D) (A ∧ ((B ∧ C) ∧D))

αα

α∧D

α

A∧α

证明. We articulate the proof in several steps. A map
homotopic to both sides of the sought homotopy will be
constructed via the equivalence

α4 : (A ∧ (B ∧ (C ∧D))→ X) ' (((A ∧B) ∧ C) ∧D → X)

160



(natural in all its arguments), defined as the composite:

A ∧ (B ∧ (C ∧D))→ X ' A→ B ∧ (C ∧D)→ X (e−1)
' A→ B → C ∧D → X (A→ e−1)
' A→ B → C → D → X (A→ B → e−1)
' A ∧B → C → D → X (e)
' (A ∧B) ∧ C → D → X (e)
' ((A ∧B) ∧ C) ∧D → X (e)

giving α4(id) : ((A ∧B) ∧C) ∧D) ' A ∧ (B ∧ (C ∧D)).
Moreover, in order to simplify the expressions of α ∧ D
and A ∧ α, we also define:

αR : ((A ∧ (B ∧ C)) ∧D → X) ' (((A ∧B) ∧ C) ∧D → X)

as the composite:

(A ∧ (B ∧ C)) ∧D → X ' A ∧ (B ∧ C)→ D → X (e−1)
' (A ∧B) ∧ C → D → X (α)
' ((A ∧B) ∧ C) ∧D → X (e)

and

αL : (A ∧ (B ∧ (C ∧D))→ X) ' (A ∧ ((B ∧ C) ∧D)→ X)

as the composite:

A ∧ (B ∧ (C ∧D))→ X ' A→ B ∧ (C ∧D)→ X (e−1)
' A→ (B ∧ C) ∧D → X (A→ α)
' A ∧ ((B ∧ C) ∧D)→ X (e)

also natural in their arguments. Evaluating these equiv-
alences to the identity function, we get new arrows that
fit in the original diagram:

161



((A ∧B) ∧ (C ∧D))

(((A ∧B) ∧ C) ∧D) (A ∧ (B ∧ (C ∧D)))

((A ∧ (B ∧ C)) ∧D) (A ∧ ((B ∧ C) ∧D))

αα

α∧D αR(id)

α4(id)

α

A∧ααL(id)

The theorem is then proved once we show the chain
of homotopies:

α◦α ∼ α4(id) ∼ αL(id)◦α◦αR(id) ∼ (A∧α)◦α◦(α∧D)
(4.3.36)

To verify the first homotopy in (4.3.36), we see that:

α ◦ α ≡ α(id) ◦ α(id)
∼ (α ◦ α)(id) (naturality of α)
≡ (e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e ◦ e ◦ (A→ e−1) ◦ e−1)(id)
∼ (e ◦ e ◦ (A→ e−1) ◦ e ◦ (A→ e−1) ◦ e−1)(id) (cancelling)
∼ (e ◦ e ◦ e ◦ (B → A→ e−1) ◦ (A→ e−1) ◦ e−1)(id) (naturality of e)
≡ α4(id)

The second homotopy in (4.3.36) is verified by (right-

162



to-left):

αL(id) ◦ α ◦ αR(id) ≡ αL(id) ◦ α(id) ◦ αR(id)
∼ (αR ◦ α ◦ αL)(id)

(naturality of α and αR)
≡ (e ◦ α ◦ e−1 ◦ e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e ◦ (A→ α) ◦ e−1)(id)
∼ (e ◦ α ◦ e ◦ (A→ e−1) ◦ (A→ α) ◦ e−1)(id)

(cancelling)
∼ (e ◦ α ◦ e ◦ (A→ (e−1 ◦ α)) ◦ e−1)(id)

(functoriality of A→ −)
≡ (e ◦ e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e

◦ (A→ (e−1 ◦ e ◦ e ◦ (B → e−1) ◦ e−1)) ◦ e−1)(id)
∼ (e ◦ e ◦ e ◦ (A→ ((B → e−1) ◦ e−1)) ◦ e−1)(id)

(cancelling)
∼ (e ◦ e ◦ e ◦ (B → A→ e−1) ◦ (A→ e−1) ◦ e−1)(id)

(funct. of A→ −)
≡ α4(id)

In order to prove the last homotopy in (4.3.36), it is
sufficient to show that αR(id) ∼ α∧D and that αL(id) ∼
A ∧ α. We have:

αR(id) ≡ e(α(e−1(id)))
∼ e(α(η))
∼ e(η ◦ α(id)) (naturality of α)
≡ ε ◦ (η ◦ α) ∧D
∼ ε ◦ (η ∧D) ◦ (α ∧D) (distrib. of ∧)
∼ α ∧D (Lemma 4.3.23)

163



and, lastly,

αL(id) ≡ e(α ◦ e−1(id))
∼ e(α ◦ η)
∼ e((α→ A ∧ (B ∧ (C ∧D))) ◦ η) (Lemma 4.3.34)
∼ e((B ∧ (C ∧D)→ A ∧ α) ◦ η) (dinaturality of η)
∼ (A ∧ α) ◦ e(η) (naturality of e)
∼ A ∧ α (Lemma 4.3.23)

thus proving the desired homotopy.

Theorem 4.3.37 (Unitors triangle). For A and B pointed
types, there is a homotopy

(A ∧ λ) ◦ α ∼ (ρ ∧B)

corresponding to the commutativity of the following dia-
gram:

((A ∧ S0) ∧B) (A ∧ (S0 ∧B))

(A ∧B)

α

ρ∧B A∧λ

证明. By an argument similar to the one for αL and αR

in Theorem 4.3.35, one can verify the homotopies A∧λ ∼
(e◦(A→ λ)◦e−1)(id) and ρ∧B ∼ (e◦ρ◦e)(id), simplifying

164



the expressions in the sought homotopy. Then:
(A ∧ λ) ◦ α ∼ e(λ ◦ e−1(id)) ◦ α(id) (simplification)

∼ α(e(λ ◦ e−1(id)) (naturality of α)
≡ e(e(e−1 ◦ e−1(e(λ ◦ e−1(id)))))
∼ e(e(e−1 ◦ λ ◦ e−1(id))) (cancelling)
≡ e(e(e−1 ◦ e ◦ b−1 ◦ e−1(id)))
∼ e(e(b−1 ◦ e−1(id))) (cancelling)
≡ (e ◦ ρ ◦ e−1)(id)
∼ ρ ∧B (simplification)

gives the desired homotopy.
Theorem 4.3.38 (Braiding-unitors triangle). For a pointed
type A, there is a homotopy

λ ◦ γ ∼ ρ

corresponding to the commutativity of the following dia-
gram:

(A ∧ S0) (S0 ∧ A)

A

γ

ρ λ

证明. We have:
λ ◦ γ ≡ λ(id) ◦ γ(id)

∼ (γ ◦ λ)(id) (naturality of γ)
≡ (e ◦ tw ◦ e−1 ◦ e ◦ b−1)(id)
∼ (e ◦ tw ◦ b−1)(id) (cancelling)
∼ (e ◦ (A→ b−1))(id)
≡ ρ(id) ≡ ρ

165



where the last homotopy is given by (A → c) ◦ b ∼ tw :
(S0 → A→ X)→ (A→ X).

Lemma 4.3.39. The following diagram commutes, for
A, B, C and X pointed types:

(B ∧ C → A→ X) (B → C → A→ X)

(B → A→ C → X)

(A→ B ∧ C → X) (A→ B → C → X)

e−1

tw

B→tw

tw

A→e−1

证明. Unfolding the definition of e−1, we get the dia-
gram:

(B ∧ C → A→ X) ((C → B ∧ C)→ C → A→ X) (B → C → A→ X)

((C → B ∧ C)→ A→ C → X) (B → A→ C → X)

(A→ B ∧ C → X) (A→ (C → B ∧ C)→ C → X) (A→ B → C → X)

e−1

C→−

tw

η→C→A→X

(C→B∧C)→tw B→tw

η→A→C→X

tw tw

A→e−1

A→(C→−) A→(η→C→X)

where the squares on the right are instances of natu-
rality of tw, while the commutativity of the pentagon on
the left follows easily from the definition of tw.

166



Theorem 4.3.40 (Associativity-braiding hexagon). For
pointed types A, B and C, there is a homotopy

α ◦ γ ◦ α ∼ (B ∧ γ) ◦ α ◦ (γ ∧ C)

corresponding to the commutativity of the following dia-
gram:

((A ∧B) ∧ C) (A ∧ (B ∧ C)) ((B ∧ C) ∧ A)

((B ∧ A) ∧ C)) (B ∧ (A ∧ C)) (B ∧ (C ∧ A))

α

γ∧C

γ

α

α B∧γ

证明. The proof is structured similarly to the one for
Theorem 4.3.35: the homotopies

B ∧ γ ∼ γL(id) with γL :≡ e ◦ (B → γ) ◦ e−1

γ ∧ C ∼ γR(id) with γR :≡ e ◦ γ ◦ e−1

can be proven in exactly the same way and, using these
simplifications, we will show that both sides of the sought
homotopy are homotopic to the same equivalence. Indeed

167



we have:

α ◦ γ ◦ α ≡ α(id) ◦ γ(id) ◦ α(id)
∼ (α ◦ γ ◦ α)(id)

(naturality of γ and α)
≡ (e ◦ e ◦ (A→ e−1) ◦ e−1 ◦ e ◦ tw ◦ e−1 ◦ e ◦ e ◦ (B → e−1) ◦ e−1)(id)
∼ (e ◦ e ◦ (A→ e−1) ◦ tw ◦ e ◦ (B → e−1) ◦ e−1)(id)

(cancelling)
∼ (e ◦ e ◦ tw ◦ (B → tw) ◦ e−1 ◦ e ◦ (B → e−1) ◦ e−1)(id)

(Lemma 4.3.39)
∼ (e ◦ e ◦ tw ◦ (B → tw) ◦ (B → e−1) ◦ e−1)(id)

(cancelling)

and

(B ∧ γ) ◦ α ◦ (γ ∧ C) ∼ γL(id) ◦ α ◦ γR(id)
(simplification)

∼ (γR ◦ α ◦ γL)(id)
(naturality of α and γR)

≡ (e ◦ γ ◦ e−1 ◦ e ◦ e ◦ (B → e−1) ◦ e−1 ◦ e ◦ (B → γ) ◦ e−1)(id)
∼ (e ◦ γ ◦ e ◦ (B → e−1) ◦ (B → γ) ◦ e−1)(id)

(cancelling)
∼ (e ◦ γ ◦ e ◦ (B → (e−1 ◦ γ)) ◦ e−1)(id)

(functoriality of B → −)
≡ (e ◦ e ◦ tw ◦ e−1 ◦ e ◦ (B → (e−1 ◦ e ◦ tw ◦ e−1)) ◦ e−1)(id)
∼ (e ◦ e ◦ tw ◦ (B → tw) ◦ (B → e−1) ◦ e−1)(id)

(cancelling)

proving the commutativity of the diagram.

168



Theorem 4.3.41 (Double braiding). For A and B pointed
types, there is a homotopy

γ ◦ γ ∼ id

corresponding to the commutativity of the following dia-
gram:

(A ∧B) (B ∧ A)

(A ∧B)

γ

γ

证明. Using that tw ◦ tw ∼ id, we get:

γ ◦ γ ≡ γ(id) ◦ γ(id)
∼ (γ ◦ γ)(id) (naturality of γ)
≡ (e ◦ tw ◦ e−1 ◦ e ◦ tw ◦ e−1)(id)
∼ id (cancelling)

as desired.

Finally we get the result of this section.

Theorem 4.3.42. ∧ is a 1-coherent symmetric monoidal
product, assuming that e is pointed natural in C.

证明. This follows immediately from the theorems in this
section.

169



Chapter 5

The Serre Spectral
Sequence

Spectral sequences are important tools in algebraic
topology.23 They give a relationship between certain
homotopy, homology and cohomology groups, in a way
that generalizes long exact sequences. This generaliza-
tion comes at a cost of being a lot more complicated
than a long exact sequence.

In this chapter we will start the study of spectral
sequences in homotopy type theory. We will introduce
the notion of spectral sequences, and then construct the
Atiyah-Hirzebruch and Serre spectral sequences for co-
homology. We follow the construction due to Michael
Shulman given in [? ]. We will also give a sketch on
how to construct the analogues for homology, and look
at some of the applications of these spectral sequences.

23The work in this chapter is joint work with Jeremy Avigad,
Steve Awodey, Ulrik Buchholtz, Egbert Rijke and Mike Shulman.

170



There are a couple of notable differences between
spectral sequences in homotopy type theory compared to
classical homotopy theory.

• As always, in HoTT all constructions have to be
homotopy invariant, so we cannot use classical con-
structions that are not homotopy invariant. For
example, the construction of the Serre spectral se-
quence for homology in [? ] uses CW-approximation
of a space and the skeleton of the obtained CW-
complex to construct the spectral sequence. These
operations are not homotopy invariant, and there-
fore cannot be performed in HoTT.

• Another difference is that homology and cohomol-
ogy are defined differently in HoTT than in classi-
cal homotopy theory. In classical homotopy theory
(co)homology is defined using singular (co)homology.
Since the intermediate steps in the construction of
singular (co)homology is not homotopy invariant,
we use a different definition of (co)homology (see
Definition 5.4.2), which impacts the definition of
spectral sequences involving (co)homology.

• The first page of a spectral sequence is often not
homotopy invariant, and therefore cannot be con-
structed in HoTT. For this reason, we start count-
ing the pages of spectral sequences at 2.

• HoTT offers a convenient language for formaliz-
ing proofs. Therefore, we have formalized all con-
structed spectral sequences in this chapter.

171



The spectral sequences we construct are not the most
general version of these spectral sequences. The spectral
sequences we construct are still more general than the
formulation of the Serre spectral sequence in many text-
books (we give a version of generalized and parametrized
cohomology), but there exist more general versions. There
are two places where we compromised on generality for
the sake of making the formalization easier. The first
compromise is that we only formalized exact couples for
graded R-modules for a ring R (which is not graded).
More generally we could do this for any abelian category,
which would require building up the theory of abelian cat-
egories (this is done in UniMath [? ]). Furthermore, we
did not look at convergence of spectral sequences in the
most general sense, since that can get quite complicated
and subtle. Instead, we only look at spectral sequences
that are eventually constant pointwise, so the ∞-page is
just the eventual value. This restriction adds the con-
dition to the spectral sequences we construct that the
coefficients are only in truncated spectra.

5.1 Spectral Sequences
A spectral sequence consists of a sequence of pages,

each of them containing a two-dimensional grid of abelian
groups. There are maps between these groups, called dif-
ferentials. These differentials form (co)chain complexes,
and the (co)homology of these complexes determine the
groups on the next page. In 5.1 we show an example of
two pages of a spectral sequence, where each dot repre-
sents an abelian group. In this figure only the two first

172



quadrants are shown, because in simple applications all
other groups are trivial, though that need not be the case
in general.

p

q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(a) The page Ep,q
2

p

q

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(b) Ep,q
3

图 5.1: Two pages of a spectral sequence.

Before we start, we define the notion of a graded
abelian group. We will give a nonstandard definition that
is equivalent to the standard one.

Definition 5.1.1. For an abelian group G, an G-graded
abelian group is a family of abelian groups indexed over
G. If M and M ′ are G-graded abelian groups, the type
of graded abelian group homomorphism from M to M ′

is a triple consisting of a degree e : G ' G (this is an
equivalence of types, not a group isomorphism), a proof
of (g : G)→ e(g) = g + e(0) and a term of type

{x y : I} → (p : e(x) = y)→Mx →M ′
y.

173



We will denote the type of homomorphisms as M →M ′.
For ϕ : M → M ′ we write degϕ for the first projection.
We will often call degϕ(0) the degree of ϕ. For x : I we
will write

ϕx :≡ ϕreflx : Mx →M ′
degϕ(x)

and
ϕ[x] :≡ ϕpx : Mdeg−1

ϕ (x) →M ′
x

where px : degϕ(deg−1
ϕ (x)) = x is the proof obtained from

the equivalence degϕ.

Remark 5.1.2. This definition looks a bit cumbersome,
since the condition on e forces e to be homotopic to the
function λg. g+h for some group element h. Furthermore,
the type of ϕ is equivalently (x : I)→ Mx → M ′

x+h. We
will now discuss why we made these choices.

To see why this is more convenient, we consider the
composition of two graded homomorphisms. Suppose we
have two graded homomorphisms ϕ : M → M ′ and ψ :
M ′ →M ′′ of degrees h : G and k : G, respectively. Then
the pointwise composition λ(g :G). λ(m :Mg). ψg+h(ϕg(m))
has type (g : G) → Mg → M ′′

(g+h)+k. So to get a graded
homomorphism of degree h + k, with the more straight-
forward representation, we would need to transport along
the equality (g + h) + k = g + (h + k). Since composi-
tions are ubiquitous, this would happen all over the place.
However, in our setting, the composite of two graded ho-
momorphisms of degree e and e′ will have degree e′ ◦ e,
without using any transports.

We eliminated a transport to define composition,
but there are other places where we cannot get rid of
them so easily. For example, given morphisms ϕ : M →

174



M ′ and ψ : M ′ → M ′′ with ψ ◦ ϕ = 0 (the graded
map that is constantly 0), we are interested in the ho-
mology of ϕ and ψ. This is the kernel of ψ quotiented
by the image of ϕ in M ′

x. However, if ϕx has type
Mx → M ′

degϕ(x), there is no map that (without trans-
ports) lands in M ′

x. We would need to transport along
the path px : deg−1

ϕ (degϕ(x)) = x and take the image of
this composite:

Mdeg−1
ϕ (x)

ϕdeg−1
ϕ (x)

−−−−−→M ′
degϕ(deg−1

ϕ (x))
∼−→M ′

x.

For this reason, we allow graded homomorphisms to be
applied to paths, so that we have a “built-in” transport.
Then we can define the homology asHx :≡ ker(ψx)/ im(ϕ[x]),
or diagramatically

Mdeg−1
ϕ (x)

ϕ[x]−−→M ′
x

ψx−→M ′′
degψ(x).

For the construction of spectral sequences, we do
not actually need the second component of a graded ho-
momorphism: all constructions also work if the degrees
are arbitrary equivalences of type I ' I, where I is an
arbitrary set. This is the definition used in the formaliza-
tion. In this document we add this condition, so that our
definition is equivalent to the usual definition of graded
morphism.

Definition 5.1.3. A spectral sequence consists of the fol-
lowing data.

• A sequence Er of abelian groups graded over Z×Z
for r ≥ 2. Er is called the r-page of the spectral
sequence;

175



• differentials, which are graded morphisms dr : Er →
Er such that dr ◦ dr = 0;

• isomorphisms αp,qr : Hp,q(Er) ' Ep,q
r+1 whereHp,q(Er) =

ker(dp,qr )/ im(d[p,q]
r ) is the cohomology of the cochain

complex determined by dr.

We use the notation for cohomologically indexed
spectral sequences, since we will construct spectral se-
quences in cohomology in this chapter. For the spec-
tral sequences in this chapter, the degree of dr will be
(r, 1− r), which signifies a cohomologically indexed spec-
tral sequence.

As mentioned before, we start counting the pages
at 2, since the first page of the spectral sequences we
construct will not be homotopy invariant. In the for-
malization we start counting at 0 for convenience. Also,
in the formalization, we assume that the grading of Er
is over some set I instead of fixing it to Z × Z. It is
not clear whether this extra generality is useful. Instead
of abelian groups, we could take objects of an arbitrary
abelian category, but for concreteness and to simplify
things, we choose to develop the theory only for abelian
groups. In the formalization we developed the theory for
graded R-module for a (non-graded) ring R, but we have
only applied it to abelian groups so far.

Note that (Er, dr) determines Er+1 but not dr+1.
Furthermore, Er is a subquotient (subgroup of a quo-
tient) of E2, so if Ep,q

2 is trivial, then Ep,q
r is trivial for all

r.
In many cases, the spectral sequence will converge.

That means that for a fixed (p, q) : Z × Z the sequence

176



Ep,q
r will be constant for r large enough. For example,

suppose that the degree of dr is (r, r−1), and E2 is limited
to the first quadrant. Now for any (p, q) all differentials in
or out of Ep,q

r will go out the first quadrant for sufficiently
large r. This means that the image of d[p,q]

r is trivial, and
the kernel of dp,qr is the full group. This implies that
Ep,q
r+1 ' Ep,q

r , so the spectral sequence converges.
Whenever a spectral sequence converges, we write

Ep,q
∞ for the eventual value of Ep,q

r for r large enough.
Now the power of spectral sequences is that there is often
a relation between Ep,q

2 and Ep,q
∞ . This relation does not

specify Ep,q
∞ exactly, but specifies that Ep,q

∞ build up some
group Dn for the diagonals where p+ q = n.

Definition 5.1.4. Suppose given an abelian group D

and a finite sequence of abelian groups (En)n. We say
that D is built from (En)n if there is a sequence of abelian
groups (Dn)n and short exact sequences

E0 →D → D1

...
Ek →Dk → Dk+1

Ek+1 →Dk+1 → Dk+2

...
Em →Dm → 0

The sequence (Dn)n is called a cofiltration of D, they are
successive quotients of D.

Definition 5.1.5. Given a graded abelian group Dn and

177



a bigraded abelian group Cp,q, we write

Ep,q
2 = Cp,q ⇒ Dp+q

if there is a spectral sequence E such that

• Ep,q
2 = Cp,q;

• E converges to E∞;

• Dn is built from Ep,q
∞ where p+ q = n.

Remark 5.1.6. This definition implicitly requires that for
p + q = n only finitely many Ep,q

∞ are nontrivial. This
is sufficient for the spectral sequences we consider in this
chapter, but this condition can be relaxed in more general
constructions of spectral sequences.

5.2 Exact Couples
As we said before, the pair (Er, dr) in a spectral

sequence specifies Er+1, but not dr+1. If we have some
more information about page r, then we can construct
page r+1 and the extra information for page r+1. Now
we can iterate this construction and obtain a spectral
sequence by forgetting about the extra information.

An exact couple exactly gives this extra informa-
tion [? ]. From it, we can compute the derived exact
couple, which gives us the information next page of the
spectral sequence.

Definition 5.2.1. An exact couple is a pair (D,E) of
Z×Z-graded abelian groups with graded homomorphisms

178



D

E

D
i

jk

that is exact in all three vertices. This means that for
all p : degj(x) =I y and q : degk(y) = z that ker(kq) =
im(jp), and similarly for the other two pairs of maps.

For an exact couple we will write ι :≡ degi and η :≡
degj and κ :≡ degk for the degrees.

Lemma 5.2.2. Given an exact couple (D,E, i, j, k), we
can define a derived exact couple (D′, E ′, i′, j′, k′) where
E ′ is the homology of d :≡ j ◦ k : E → E. The degrees
of the derived maps are degi′ ≡ ι, degk′ ≡ κ and degj′ ≡
η ◦ ι−1.

D′

E ′

D′i′

j′k′

证明. In this proof we will be explicit about the grading
of D and E, which is a lot trickier (at least in intensional
type theory) than a proof without the grading. For a
proof that does not take the grading into account, see
for example [? , Lemma 1.1]. We define for x : Z × Z
the graded abelian groups D′ and E ′ by D′

x = im i[x] and
E ′
x = ker dx/ im d[x]. Now i′x : D′

x → D′
ιx is defined as the

composite
D′
x ↪→ Dx

i−→ D′
ιx.

This is sufficient to define i′ on all paths ιx = y as a
function Dx → Dy.

179



We first define j′
px : D′

ιx → E ′
ηx for the canonical path

px : η(ι−1(ιx)) = ηx, which is sufficient to define j′ in
general. Note that D′

ιx ≡ im i[ιx] ' im ix, so to define
j′
px it is sufficient to define ̃ : Dx → E ′

ηx such that (a :
Dx) → ix(a) = 0 → ̃(a) = 0. We define ̃(a) :≡ [jxa].
This is well-defined, since jxa ∈ ker dηx,24 because

dηx(jxa) = jκ(ηx)(kηx(jxa)) = jκ(ηx)0 = 0.

Now suppose that ix(a) = 0. Without loss of generality
we may assume that x ≡ κy. By exactness, this means
that a ∈ im ky, so there is b : Ey such that ky(b) = a.
Now jxa = jx(kyb) ≡ dyb, so

jxa ∈ im dy ' im d[degd y] ≡ im d[ηx].

This shows that ̃(a) = 0, completing the definition of j′.
Note that j′

px(ixa) = [jxa]. To define k′
x : E ′

x → D′
κx, first

note that if a ∈ ker dx, then kxa ∈ ker jκx = im i[κx] by
exactness. Now we need to show that if a ∈ im d[x], then
kxa = 0. By assumption, we have b : Eη−1κ−1x such that
d[x](b) = a. Now we compute (using kxj[x] = 0)

kxa = kx(d[x]b) = kx(j[x](k[η−1x]b)) = 0.

This defines k.
24We use the set-theoretical notation g ∈ H to say that a group

element g : G is in subgroup H. Formally, a subgroup H is an
element of G→ Prop (containing 0, and closed under addition and
negation) and g ∈ H is defined as H(g). Note that (g : G)×H(g)
can be endowed with a group structure, which is H viewed as a
group.

180



Showing exactness of the derived couple involves
some diagram chasing. To show that j′i′ = 0 it is suffi-
cient to show that for all a : D′

ιx we have j′
p(ιx)(i′ιxa) = 0.

Since a ∈ im i[ιx] ' ix we know that a = ixb for some
b : Dx. We compute

j′
p(ιx)(i′ιxa) = j′

p(ιx)(iιxa) = [jιxa] = [jιx(ixb)] = [0] = 0.

To show that ker j′ ⊆ im i′, it is sufficient to show that
ker j′

p(κx) ⊆ im i′κx. Suppose a : D′
ι(κx) such that j′

p(κx)(a) =
0, we know that a = iκx(b) for some b. Now

0 = j′
p(κx)(a) = j′

p(κx)(iκx(b)) = [jκx(b)],

which means that jκx(b) ∈ im d[κ(ηx)] ' im dx. This means
that for some c : Ex we have jκx(b) = dx(c) = jκx(kxc).
This means that jκx(b−kxc) = 0, hence b−kxc ∈ ker jκx =
im i[κx]. This means that we can define b−kxc : D′

κx. Now
we compute

i′κx(b− kxc) = iκxb− iκx(kxc) = a− 0 = a,

which means a ∈ im i′κx, as desired.
We will omit the other cases, which are similar but

easier.

Repeating the process of deriving exact couples, we
get a sequence of exact couples (Dr, Er, ir, jr, kr).25 We
get a spectral sequence (Er, dr) where dr :≡ jr ◦ kr. Note
that

degdr = degjr ◦ degkr = η ◦ ιr ◦ κ

25We will now put the grading of D, E and the maps as super-
script, so that we can put the page as subscript.

181



Given some extra conditions on the exact couple, we
can show that this spectral sequence converges.

Definition 5.2.3. We call an exact couple bounded if for
every x : Z× Z there is are bounds Bx : N such that for
all s ≥ Bx we have

Eι−s(x) = 0 and Dιs(x) = 0

Remark 5.2.4. The condition on D also shows that if you
go sufficiently far in the ι-direction, then E is trivial,
since D j−→ E

k−→ D is exact and the occurrences of D
will be trivial. Converse, the condition on E shows that
if you go sufficiently far in the ι−1 direction, i will be an
equivalence, by the following exact sequence.

E
k−→ D

i−→ D
j−→ E

We call x : Z×Z a stable index whenever i[ι−sx] is surjec-
tive for all s ≥ 0.

Given a bounded exact couple, the pages stabilize
pointwise, which is the content of the next lemma.

Lemma 5.2.5. For a bounded exact couple (D,E, i, j, k)
we have for all sufficiently large r that Dx

r+1 = Dx
r and

Ex
r+1 = Ex

r .

证明. Note that Ex
r+1 = ker dxr/ im d[x]

r . Since dr has de-
gree η ◦ ιr ◦κ, and because Z×Z is an abelian group, the
degrees commute.26 The codomain of dxr is Eη(ιr(κx))

r =

26In the formalization, we do not assume that the degrees are
shifts by a group element, and we explicitly assume that κι = ικ

and ιη = ηι.

182



Eιr(η(κx))
r , which is trivial for sufficiently large r by Remark 5.2.4.

Also, the domain of d[x]
r is Eκ−1(ι−r(η−1x))

r = Eι−r(κ−1(η−1x))
r ,

which is trivial for sufficiently large r by the definition of
boundedness.

To show that D stabilizes, first note that if i[ι−1x]
r is

surjective, then i
[x]
r+1 is surjective. The reason is that

ir+1 : Dι−1x
r+1

∼−→ Dι−1x
r → Dx

r+1

is now a composite of two surjective maps. This means
that if the maps i[ι−sx]

r0 are surjections for all s ≥ B +
1, then the maps i[ι

−sx]
r0+1 will be surjections for all s ≥

B. In this case, for r ≥ r0 + B we have that i[x]
r is

a surjection, hence that Dx
r+1 = Dx

r . Since i
[ι−sx]
0 are

surjections for sufficiently large s by Remark 5.2.4, we
finish the proof.

By the proof of Lemma 5.2.5 we get explicit bounds
BD
x and BE

x such that Dx
r = Dx

BDx
and Ex

r′ = Ex
BEx

for
all r ≥ BD

x and r′ ≥ BE
x . We define Dx

∞ :≡ Dx
BDx

and
Ex

∞ :≡ Ex
BEx

. Both BD
x and BE

x will be the maximum of
By for some sequence of indices y.

Theorem 5.2.6 (Convergence Theorem). Let (D,E, i, j, k)
be a bounded exact couple and let x be a stable index.
Then Dκx is built from (Eιn(x)

∞ )0≤n<Bκx.

证明. Define Cn = Dκ(ιnx)
∞ . Let n : N be arbitrary, then

for sufficiently large r the following is a short exact se-
quence

0 jr−→ Eιnx
r

kr−→ Dκ(ιnx)
r

ir−→ Dι(κ(ιnx))
r

jr−→ 0.

183



This is the case, because for sufficiently large r the do-
main of j[ιnx]

r and the codomain of jrι(κ(ιnx)) are con-
tractible. Now (possibly by increasing r) these groups
are in the stable range, so we get a short exact sequence

0→ Eιnx
∞ → Cn → Cn+1 → 0.

Moreover, we have C0 ≡ Dκx
∞ = Dκx because x is a stable

index. Lastly, for s ≥ Bκx we know that Cs is trivial, be-
cause Dκ(ιn) is trivial by the condition of being bounded.
This shows that Dκx is built from (Eιn(x)

∞ )0≤n<Bκx .

5.3 Spectra
We have not yet discussed how to get an exact cou-

ple in the first place. Recall that from a pointed map
we get a long exact sequence of homotopy groups. For
a sequence of pointed maps we get a sequence of long
exact sequences. However, we do not want to do this for
pointed maps, but for maps between spectra.

You can think of a spectrum as a generalized space
with negative dimensions. Suppose we are given a pointed
type X and a chosen delooping Y of X. That is, Y is a
pointed type such that ΩY '∗ X. Now the (n+1)-th ho-
motopy group of Y is equal to the n-th homotopy group
of X. The 0-th homotopy group of Y is new information,
and we can think of it as the (−1)-th homotopy group of
X. Spectra go further on this idea: it is a pointed type
with infinitely many deloopings.

Definition 5.3.1. A prespectrum is a pair consisting of
a sequence of pointed types Y : Z → U∗ and a sequence

184



of pointed maps e : (n : Z) → Yn →∗ ΩYn+1. An Ω-
spectrum or spectrum is a prespectrum (Y, e) where en is
a pointed equivalence for all n. We will often just write Y
for the pair (Y, e), and we denote the type of (pre)spectra
by Prespectrum and Spectrum.
A map between (pre)spectra (Y, e) → (Y ′, e′) is a pair
consisting of f : (n : Z) → Yn → Y ′

n and p : (n : N) →
e′
n ◦ fn ∼∗ Ωfn+1 ◦ en.

Remark 5.3.2. Usually a (pre)spectrum is indexed over N
and not over Z. We index it over Z so that we do not
have to do a case split in — for example — the definition
of homotopy group of a spectrum, see Definition 5.3.4.
Example 5.3.3.

• If A is an abelian group, we have HA : Spectrum
where (HA)n = K(A, n) for n ≥ 0 and (HA)n = 1
for n < 0.

• Given Y : Spectrum and k : Z, we can define two
new spectra ΩkY and ΣkY : Spectrum with

(ΩkY )n :≡ Yn−k (ΣkY )n :≡ Yn+k

• Given a spectrum map f : X → Y , we have a spec-
trum fibf : Spectrum with (fibf )n :≡ fibfn . Further-
more we have a spectrum map p1 : fibf → X. This
follows from the following two facts about fibers
(which we will not prove here).

(i) Given a pointed map g : A → B, there is
a pointed equivalence e1 : Ω fibg '∗ with a
pointed homotopy

185



Ω fibg

A

fibΩg

Ωp1

p1

e1

(ii) fib is a functor from pointed maps to pointed
types and p1 is a natural transformation. This
means the following. Suppose we are given a
square of pointed maps and a homotopy filling
the following square.

A A′

B B′

f

h
g

h′

Then there is a pointed map e2 : fibf → fibg,
functorial in (h, h′). In particular this means
that if h and h′ are equivalences, then e2 is.
The naturality of p1 means that we have the
following pointed homotopy.

fibf A

fibg B

p1

e2
p1

h

Given an Ω-spectrum Y and n : Z, we define can the

186



n-th homotopy group of Y to be

πn(Y ) := πn+k(Yk) : AbGroup

for any k such that n+ k ≥ 0. This is independent of k,
because

πn+(k+1)(Yk+1) ' πn+k(ΩYk+1) ' πn+k(Yk).

For concreteness, in the following definition we pick k =
2−n. We make this choice so that πn(Y ) directly carries
the structure of an abelian group.

The homotopy group of a prespectrum Y is a bit
different, since πn+k(Yk) is not independent of k. In this
case, it is the colimit as k → ∞. We make the substitu-
tion ` = n + k − 2 to make the index of the homotopy
group always positive.

Definition 5.3.4. Given an Ω-spectrum Y and n : Z,
we define the n-th homotopy group of Y as

πn(Y ) :≡ π2(Y2−n).

For a prespectrum Y we define

πn(Y ) :≡ colim`→∞(π`+2(Y`+2−n)).

Note that the homotopy group of a prespectrum
is a set by Corollary 3.3.30(i), and the colimit can be
equipped with a group structure, making πn(Y ) an abelian
group for a prespectrum Y .

The long exact sequence of homotopy groups for
pointed types, constructed in Section 4.1.1, induces one
on spectra.

187



Theorem 5.3.5. Given a spectrum map f : X → Y

with fiber F , we get the following long exact sequence of
homotopy groups indexed over Z× fin3.

πk(Y )πk(X)πk(F )

πk+1(Y )πk+1(X)πk+1(F )

πk+2(Y )πk+2(X)πk+2(F )

...

...

πk(f)

πk(p1)

πk+1(f)

πk+1(p1)

πk+2(f)

πk+2(p1)

We will use the following lemma. Recall the defini-
tion of successor structure from Definition 4.1.2.

Lemma 5.3.6. Suppose given two successor structures
N and M , and for each n : N let Gn be a long exact
sequence index by M . Let m : M and k ≥ 2. Suppose
that

• for all n : N , Gn+1
m ' Gn

m+k and Gn+1
m+1 ' Gn

m+k+1

• for all n : N the following diagram commutes.

188



Gn
m+kGn

m+k+1

Gn+1
mGn+1

m+1

∼∼

Then there is a long exact sequence H : N×fink−1 → Set∗

with H(n,`) :≡ Gn
m+`

For k = 3 the hypotheses can be represented in the
diagram below.

Gn
mGn

m+1Gn
m+2Gn

m+3Gn
m+4· · ·

Gn+1
mGn+1

m+1Gn+1
m+2Gn+1

m+3Gn+1
m+4· · ·

Gn+2
m

Gn+2
m+1Gn+2

m+2Gn+2
m+3Gn+2

m+4· · ·

...

...

∼∼

∼
∼

Proof (Lemma 5.3.6). The map H(n,`+1) → H(n,`) is de-
fined to be the given map Gn

m+`+1 → Gn
m+`. The map

H(n+1,0) → H(n,k−1) is defined to be the composite

Gn+1
m

∼−→ Gn
m+k → Gn

m+k−1.

It is easy to check that this is a long exact sequence from
the conditions.

189



Proof (Theorem 5.3.5). For each n : Z we get a long ex-
act sequence of homotopy groups for f2−n by Theorem 4.1.1.
We splice them together using Lemma 5.3.6 with N =
(Z, λn. n+1) and M = (N, λn. n+1) and with k = 3 and
m = (2, 0). This means that the resulting sequence is

π2(Y2−n)π2(X2−n)π2(F2−n)

π2(Y2−(n+1))π2(X2−(n+1))π2(F2−(n+1))

π2(Y2−(n+2))π2(X2−(n+2))π2(F2−(n+2))

...

...

π2(f)

π2(p1)

π2(f)

π2(p1)

π2(δ)

π2(f)

π2(p1)

We still need to check the conditions for the Lemma. The
first isomorphism is given by the following composition
π2(Y2−(n+1)) ' π2(ΩY2−(n+1)+1) ' π2(ΩY2−n) ≡ π3(Y2−n),

The second isomorphism is the same, replacing Y by X.
The square commutes because the two isomorphisms are
both natural in Y .

Suppose given a sequence of spectra A and a se-
quence of spectrum maps

· · · → As
fs−→ As−1

fs−1−−→ As−2 → · · ·

190



Let Bs :≡ fibfs . Then Dn,s :≡ πn(As) and En,s :≡ πn(Bs)
are graded abelian groups and the maps of the long exact
sequences become graded homomorphisms. This gives
exactly the data of an exact couple.

For cohomology, it is customary to reindex the pages
of the spectral sequence with the base change (p, q) =
(s− n,−s), or equivalently (n, s) = (−(p+ q),−q).

Theorem 5.3.7. Given a sequence of spectra

· · · → As
fs−→ As−1

fs−1−−→ As−2 → · · ·

with fibers Bs :≡ fibfs, suppose for all n there is a βn
such that for all s ≤ βn we have πn(As) = 0 and suppose
that for all n there is a γn such that for all s > γn the
map πn(fs) is an isomorphism. Then the exact couple
constructed from this sequence is bounded. This spectral
sequence gives

Ep,q
2 = π−(p+q)(B−q)⇒ π−(p+q)(Aγ−(p+q)).

证明. Note that for this spectral sequence we have ι(n, s) ≡
degi(n, s) ≡ (n, s − 1) and κ = id. This means that we
need to show that for all (n, s) : Z × Z there is a bound
β′
n,s such that for all t ≥ β′

n,s we have

En,s+t ≡ πn(Bs+t) = 0 and Dn,s−t ≡ πn(As−t) = 0.

Note that the right equation holds if s−t ≤ βn, i.e. if t ≥
s− βn. By the long exact sequence of homotopy groups
we know that if fs : As → As−1 induces an equivalence
on both πn and πn+1, then πn(Bs+t) = 0. So if we define

β′
n,s :≡ max(s− βn, γn − s, γn+1 − s),

191



we know that the exact couple is bounded with bound
β′.

Now note that x = (n, γn) is a stable index, be-
cause πn(fγn+t) is surjective for all t ≥ 0. Therefore, by
Theorem 5.2.6 we know thatDn,γn is built from (En,γn−s

∞ )0≤s≤β′
n,γn

.
If we apply the reindexing (p, q) = (s−n,−s), we get the
desired relation

Ep,q
2 = π−(p+q)(B−q)⇒ π−(p+q)(Aγ−(p+q)).

5.4 Spectral Sequences for Coho-
mology

Cohomology groups are algebraic invariants of types.
They are often easier to compute than homotopy groups,
but they can also be used to compute certain homotopy
groups, often via the universal coefficient theorem and
the Hurewicz theorem (neither of which have been proven
in HoTT yet).

The intermediate steps of most classical construc-
tions of the singular cohomology are not homotopy in-
variant. Cellular cohomology is only defined for cell com-
plexes and not for arbitrary spaces, but it can be de-
fined in HoTT [? ]. Singular cohomology is defined as
a quotient of a large abelian group that is not homo-
topy invariant, which makes this definition impossible in
HoTT. However, classically, Eilenberg-MacLane spaces
represent cohomology, and we can use this fact as the
definition of cohomology in HoTT [? ].

192



Normally cohomology groups have coefficients in an
abelian group, but more generally they can have coef-
ficients in a spectrum, or even a family of spectra. In
this section we will define cohomology groups and con-
struct the Atiyah-Hirzebruch spectral sequence for coho-
mology. This is a generalization of the spectral sequence
defined in [? ] in the special case of topological K-
theory. From the Atiyah-Hirzebruch spectral sequence
we can construct the Serre spectral sequence, sometimes
also called the Leray-Serre spectral sequence.

Definition 5.4.1. Suppose given X : U∗ and Y : X →
Spectrum. We define (x : X) →∗ Y x : Spectrum such
that ((x : X) →∗ Y x)n :≡ (x : X) →∗ (Y x)n. If Y does
not depend on X, we write X →∗ Y .

For an unpointed typeX : U and Y : X → Spectrum,
we similarly define (x : X) → Y x : Spectrum such that
((x : X) → Y x)n :≡ (x : X) → (Y x)n (this has as base-
point the constant map into the basepoint of (Y x)n), and
abbreviate this to X → Y if Y does not depend on X.

These spectra are well-defined, since we have

Ω((a : A)→∗ (Ba)) ' (a : A)→∗ Ω(Ba)

and
Ω((a : A)→ (Ba)) ' (a : A)→ Ω(Ba).

Moreover, they satisfy the expected properties of depen-
dent product. In particular, if X : U∗ and Y, Z : X →
Spectrum and moreover if we have a fiberwise spectrum
map f : (x : X)→ Y x→ Zx, this induces a map on the
dependent products

Πf : ((x : X)→ Y x)→ ((x : X)→ Zx).

193



Definition 5.4.2. Suppose given X : U∗, Y : X →
Spectrum and n : Z. We define the geneneralized, parametrized,
reduced cohomology of X with coefficients in Y as27

H̃n(X;λx. Y x) :≡ π−n((x : X)→∗ Y x) ' ‖(x : X)→∗ (Y x)n‖0.

If Y does not depend on X, we have the unparametrized
cohomology as

H̃n(X;Y ) :≡ π−n(X →∗ Y x) ' ‖X →∗ Yn‖0.

If X : U is an arbitrary type, we define the unreduced
cohomology as

Hn(X;λx. Y x) :≡ π−n((x : X)→ Y x) ' ‖(x : X)→ (Y x)n‖0 ' H̃n(X+;λx. Y+x).

Here X+ :≡ X + 1 : U∗ and Y+ : X+ → Spectrum is de-
fined as Y+(inl(x)) :≡ Y x and Y+(inr(?)) :≡ 1. If X : U∗

and A : X → AbGroup, we define the ordinary cohomol-
ogy as

H̃n(X;λx.Ax) :≡ H̃n(X;λx.H(Ax).

We can combine the attributes ordinary/generalized, parametrized/un-
parametrized and reduced/unreduced for cohomology how-
ever we want, leading to eight different notions.

We define

H̃n(X) :≡ H̃n(X;Z)

and similarly for unreduced cohomology.
27We will write λx. Y x in η-expanded form to remember that

this is parametrized cohomology.

194



Unparametrized cohomology satisfies the Eilenberg-
Steenrod axioms for cohomology. Although we will not
use this fact in this chapter, for completeness we will
state it here.

To give the definition we need to introduce one more
concept.

Definition 5.4.3. A type X has n-choice for n ≥ −2 if
for all P : X → U the canonical map

‖(x : X)→ Px‖n → ((x : X)→ ‖Px‖n)

is an equivalence.

Note that in particular fink has n-choice for all k, n.

Definition 5.4.4. A unparametrized reduced cohomology
theory is a contravariant functor Ẽn : U∗ → AbGroup
for every n : Z satisfying the Eilenberg-Steenrod axioms.
Functoriality means that for a pointed map f : X →∗

Y there is a map Ẽn(f) : Ẽn(Y ) → Ẽn(X) such that
Ẽ(id) ∼∗ id and Ẽ(g ◦ f) ∼∗ Ẽ(f) ◦ Ẽg. The Eilenberg-
Steenrod axioms are

• (Suspension axiom) There is a natural transforma-
tion Ẽn+1(ΣX) ' Ẽn(X).

• (Exactness) Given a cofiber sequence X f−→ Y
g−→ Z,

the sequence

Ẽn(Z) Ẽn(g)−−−→ ẼnY
Ẽn(f)−−−→ Ẽn(X)

is exact at Ẽn(Y ).

195



• (Additivity) Suppose given a type I satisfying 0-
choice and X : I → U∗. Then the canonical homo-
morphism

Ẽn
( ∨

i

Xi
)
→ ((i : I)→ Ẽn(Xi))

is an isomorphism.

A cohomology theory is called ordinary if it also satisfies
the following axiom.

• (Dimension) If n 6= 0, then Ẽn(S0) is trivial.

The following theorem has been proven in [? ]. We
will not repeat the proof here.

Theorem 5.4.5. Unparametrized generalized reduced co-
homology is a cohomology theory. Ordinary cohomology
also satisfies the dimension axiom.

We will not use Theorem 5.4.5 in the remainder of
this chapter.

To construct the Atiyah-Hirzebruch spectral sequence,
we need the Postnikov tower of a spectrum.

Definition 5.4.6. We say that for k : Z a spectrum Y is
k-truncated if Yn is (k + n)-truncated for all n : Z (using
the convention that any type is `-truncated for ` ≤ −2).

The k-truncation of a spectrum Y , written ‖Y ‖k, is
defined as (‖Y ‖k)n :≡ ‖Yn‖k+n where we define ‖A‖` = 1
for ` ≤ −2.

Lemma 5.4.7. The usual properties of truncations also
hold for spectra. In particular we will use that there is

196



a spectrum map |−|k : Y → ‖Y ‖k and that if Z is k-
truncated, then a spectrum map f : Y → Z induces a
spectrum map ‖Y ‖k → Z.

证明. The underlying maps are the corresponding facts
for pointed maps. The fact that these maps are spectrum
maps comes from the fact that these operations commute
with taking loop spaces. We omit the details here.

Lemma 5.4.8 (Postnikov Tower for spectra). For s : Z
and Y : Spectrum there is a spectrum map f s : ‖Y ‖s →
‖Y ‖s−1 that levelwise has fiber Σn(Hπs(Y )). That is,

(fibfs)k '∗ (Σs(Hπs(Y )))k.

We should be able to extend this equivalence to a
spectrum equivalence, but we do not need this strength-
ening for the remainder of the proof.

证明. Note that ‖Y ‖s−1 is (s − 1)-truncated, and there-
fore s-truncated. By the elimination of spectrum trunca-
tion in Lemma 5.4.7 we get a spectrum map f s : ‖Y ‖s →
‖Y ‖s−1. For the levelwise pointed equivalence, we need
to show that

fibfs
k
'∗ K(πs(Y ), s+ k)

To show this, by Theorem 4.2.4 we need to show that fibfs
k

is (s+k)-truncated, (s+k−1)-connected and πs+k(fibfs
k
) '

πs(Y ).
Note that f sk : ‖Yk‖s+k → ‖Yk‖s+k−1, so the trun-

catedness follows because the domain and codomain of
f sk are both (s + k)-truncated. For the connectedness,
we know that |−|s+k−1 : Yk → ‖Yk‖s+k−1 is (s + k −

197



1)-connected, and the elimination principle for trunca-
tions preserve connectedness, therefore f sk is (s+ k − 1)-
connected. To compute the homotopy group, we look at
a piece of the long exact sequence for homotopy groups
for f sk at level s+ k and s+ k + 1.

0πs+k(Y )πs+k(fibfs
k
)

00•

Since we have the exact sequence 0 → πs+k(fibfs
k
) →

πs+k(Y ) → 0, the middle map must be an equivalence,
which finishes the proof.

For a spectrum Y , we get the Postnikov tower

· → ‖Y ‖s → ‖Y ‖s−1 → ‖Y ‖s−2 → · · ·

This satisfies the conditions of Theorem 5.3.7, but unfor-
tunately the spectral sequence constructed from this is
trivial. We need another ingredient to get an interesting
spectral sequence.

Lemma 5.4.9. Suppose given X : U∗ and two family of
spectra Y, Z : X → Spectrum. A family of spectrum maps

f : (x : X)→ Y x→ Zx

induces a spectrum map between the spectra of sections
for Y and Z:

f ◦ (−) : ((x : X)→ Y x)→ ((x : X)→ Zx).

198



Moreover, the fiber of this spectrum map is levelwise (x :
X)→ fibfx, that is

(fibf◦(−))n '∗ ((x : X)→ fibfx)n.

The levelwise equivalence should be extendable to a
spectrum equivalence, but we do not need that in this
chapter.

证明. We define (see Lemma 2.2.7.(vi))

(f◦(−))n :≡ fn◦(−) : ((x : X)→∗ (Y x)n)→∗ ((x : X)→∗ (Zx)n).

This is a spectrum map because of the pointed function
extensionality mentioned in Lemma 2.2.7.(viii).

By Lemma 2.2.7.(vi) the fiber of this map is levelwise
(x : X)→ fibfx.

We now have all the ingredients of the Atiyah-Hirzebruch
spectral sequence.

Theorem 5.4.10 (Atiyah-Hirzebruch spectral sequence
for reduced cohomology). If X : U∗ is a pointed type and
Y : X → k -Spectrum is a family of k-truncated spectra
over X, then we get a spectral sequence with

Ep,q
2 = H̃p(X;λx. π−q(Y x))⇒ H̃p+q(X;λx. Y x).

证明. Define As :≡ ((x : X) →∗ ‖Y x‖s) and consider
the sequence of spectra

· · · → As
fs−→ As−1

fs−1−−→ As−2 → · · ·

where fs is the map induced by the Postnikov tower.
By Lemma 5.4.9 and Lemma 5.4.8 fs levelwise has fiber

199



Bs :≡ (x : X) →∗ ΣsHπs(Y x). We want to apply
Theorem 5.3.7, so we need to check the conditions of
that theorem. For n : Z we define βn :≡ n − 1. Notice
that As is s-truncated, and thus for s ≤ Bn we have

πn(As) :≡ πn((x : X)→∗ ‖Y x‖s) = 0.

For n : Z define γn :≡ k. Then for s ≥ γn the spectrum
As is levelwise equivalent to (x : X) →∗ Y x, so for s >
γn the map As → As−1 becomes levelwise the identity
map under that equivalence. This means that fs is an
equivalence, so in particular πn(fs) is an isomorphism.
By Theorem 5.3.7 we now get the spectral sequence

Ep,q
2 = π−(p+q)(B−q)⇒ π−(p+q)(Ak).

We now compute

π−(p+q)(B−q) ' π−(p+q)((x : X)→∗ Σ−qHπ−q(Y x))
' H̃p+q(X;λx.Σ−qHπ−q(Y x))
' H̃p(X;λx. π−q(Y x))

and

π−(p+q)(Ak) ' π−(p+q)((x : X)→∗ ‖Y x‖k)
' π−(p+q)((x : X)→∗ Y x)
' H̃p+q(X;λx. Y x).

We also have the corresponding spectral sequence
for unreduced cohomology.

200



Corollary 5.4.11 (Atiyah-Hirzebruch spectral sequence
for unreduced cohomology). If X : U is any type and
Y : X → k -Spectrum is a family of k-truncated spectra
over X, then

Ep,q
2 = Hp(X;λx. π−q(Y x))⇒ Hp+q(X;λx. Y x).

证明. Apply Theorem 5.4.10 to X+ and Y+ (defined in
Definition 5.4.2).

From the Atiyah-Hirzebruch spectral sequence we
can construct the Serre spectral sequence.

Theorem 5.4.12 (Serre spectral sequence for cohomol-
ogy). Suppose given B : U , a family of types F : B → U
and a spectrum Y : Spectrum that is k-truncated. Then

Ep,q
2 = Hp(B;λb.Hq(Fb;Y ))⇒ Hp+q((b : B)× Fb;Y ).

证明. Apply Corollary 5.4.11 to the type B and and
the family of spectra λb. Fb → Y , which is k-truncated.
Then we get

Ep,q
2 = Hp(B;λb. π−q(Fb→ Y ))⇒ Hp+q(B;λb. Fb→ Y ).

Note that π−q(Fb→ Y ) ' Hq(Fb;Y ), so the second page
is the desired group, and for the ∞-page we compute

Hp+q(B;λb. Fb→ Y ) = π−(p+q)((b : B)→ Fb→ Y )
= π−(p+q)(((b : B)× Fb)→ Y )
= Hp+q((b : B)× Fb;Y ).

201



Equivalent to the data given in Theorem 5.4.12 is
a map X → B and a k-truncated spectrum Y . In that
case we get the spectral sequence

Ep,q
2 = Hp(B;λb.Hq(fibf (b);Y ))⇒ Hp+q(X;Y ).

Analogous to the proof of Theorem 5.4.12 we also have a
version when Y is parametrized over B. In that case we
get

Ep,q
2 = Hp(B;λb.Hq(fibf (b);Y ))⇒ Hp+q(X;λx. Y (fx)).

We get a useful special case of the Serre spectral
sequence when the family λb.Hq(Fb;Y ) is constant. This
happens in particular when B is simply connected.

Corollary 5.4.13. Suppose given a simply connected
pointed type B : U∗, a family of types F : B → U and a
spectrum Y : Spectrum that is k-truncated. Then

Ep,q
2 = Hp(B;Hq(Fb0;Y ))⇒ Hp+q((b : B)× Fb;Y ).

证明. Apply Theorem 5.4.12. The family λb.Hq(Fb;Y ) :
B → AbGroup is a family of sets. Since B is simply
connected, every such family is constant, so all fibers are
equal to Hq(Fb0;Y ).

In the spectral sequences constructed we assumed
that the spectra were truncated. The reason we need this
assumption is that the notion of convergence we used for
spectral sequence is the eventual value of the sequence.
If we had a stronger notion of convergence, we might
be able to relax the truncatedness condition. However,
there is another reason why the spectral sequence can

202



become (pointwise) eventually constant. Instead of as-
suming that the spectra are truncated, we can pose a
restriction on the base space.

Definition 5.4.14. We say that X : U∗ satisfies weak
pointed choice if there is a natural number n such that
for all families Y : X → U∗ of n-connected types the
type of dependent pointed maps (x : X) →∗ Y (x) is
0-connected.

Example 5.4.15.

• The spheres Sn satisfy weak pointed choice. The
proof is easy for n = 0, which we will skip. For
Sn+1, note that

((x : Sn+1)→∗ Y (x)) ' ? =ΩnY (−)
surf ?

where surf : Ωn+1Sn+1 is the surface of Sn+1 and
? : ΩnY (base) is the basepoint. Now if Y is a family
of (n+1)-connected types, then ΩnY (−) is a family
of 1-connected types, and a pathover in that family
is 0-connected, as desired.

• Suppose I is a type that satisfies 0-choice (see Definition 5.4.3).
Then the collection of types that satisfy weak pointed
choice are closed under I-indexed wedges. This fol-
lows from the dependent universal property of the
wedge.( ∨
i:I
Xi →∗ P (x)

)
' (i : I)→ (x : Xi)→∗ P (ini(x)).

Theorem 5.4.16. If X : U∗ satisfies weak pointed choice
and Y : X → Spectrum is any family of spectra, we get

203



the spectral sequence in Theorem 5.4.10:

Ep,q
2 = H̃p(X;λx. π−q(Y x))⇒ H̃p+q(X;λx. Y x).

证明. The proof is the mostly the same as for Theorem 5.4.10.
The only difference is in showing that the sequence sta-
bilizes on homotopy groups when s is large. Suppose X
satisfies choice with respect to k-connected families. For
n : Z define γn :≡ n + k. Then for s > γn we know that
the fiber of fs has as k-th homotopy group

π`(Bs) = π0(Ω`Bs) = ‖(x : X)→∗ K(πs(Y x), s− `)‖0.

This is a product into a family of (s − ` − 1)-connected
types, which for ` = n and ` = n − 1 is a family of at
least k-connected types. By the weak choice principle
on X this type is 0-connected, so these homotopy groups
are trivial. Now by the long exact sequence of homo-
topy groups for fs the map πn(fs) is an isomorphism, as
required.

5.5 Spectral Sequences for Homol-
ogy

Homology theory has not been developed as much as
cohomology theory in HoTT. It is known that the homol-
ogy given by a prespectrum forms a homology theory [?
]. Lemma 18 in that paper was not proven carefully, but
it follows from the results in Section 4.3.

In this section, we sketch the construction of the
Atiyah-Hirzebruch and Serre spectral sequences for ho-
mology [? ]. The results in the section are not proven

204



in HoTT, and are therefore stated as remarks without
proof.

If X : U∗ and Y : Prespectrum, we can define X∧Y :
Prespectrum with

(X ∧ Y )n :≡ X ∧ Yn.

To show that it is a prespectrum, recall the adjunction
between the suspension and the loop. For pointed types
X and Y we have a natural equivalence

(ΣX →∗ Y ) ' (X →∗ ΣY ).

Therefore, to characterize a prespectrum, it is sufficient
to give a map fn : ΣYn → Yn+1. This is given for the
smash prespectrum as the composite

Σ(X ∧ Yn) ∼−→ X ∧ ΣYn
X∧fn−−−→ X ∧ Yn+1.

We can define reduced homology

H̃n(X;Y ) :≡ πn(X ∧ Y ).

For the construction of parametrized homology we need
to generalize the smash product.

Definition 5.5.1. Given A : U∗ and B : A → U∗, we
define the parametrized smash

(x : A) ∧B(x)

to be the pushout

205



A+B 2

(x : A)×B(x) (x : A) ∧B(x)

•
a0

A

B
b0

B(a0)

Remark 5.5.2. The strategy for constructing the spectral
sequences for homology is as follows.

• The parametrized smash is (should be) left adjoint
to pointed dependent maps. That means that there
is a natural equivalence

(((x : A) ∧Bx)→∗ C) ' (x : A)→∗ Bx→∗ C.

• From this we get (natural) equivalences

Σ((x : A) ∧Bx) ' ((x : A) ∧ Σ(Bx));

((x : A) ∧Bx) ∧ C ' (x : A) ∧ (Bx ∧ C);
(x : A+) ∧B+x) ∧ C ' (x : A)×Bx.

The proofs of these properties should be similar to
the proofs in Section 4.3.4.

• Therefore, for X : U∗ and Y : X → Prespectrum we
have a prespectrum (x : X) ∧ Y x. The maps are
given by the above equivalence.

206



• We can now define parametrized (reduced, general-
ized) homology as

Hn(X;λx. Y x) :≡ πn((x : X) ∧ Y x).

We can define unreduced homology by adding a
point to X, in the same way as for cohomology.

• As before, given X : U∗ and Y : X → Spectrum,
we can again form the Postnikov tower of Y x for
any x : X. We now want to take the parametrized
smash over X, but there is no hope to compute the
fiber of this spectrum.

• However, we should be able to do it when we work
in spectra. The forgetful functor Spectrum→ Prespectrum
has a left adjoint, called spectrification. The spectri-
fication LY of a prespectrum Y can be constructed
either as a higher inductive family of types [? ] or
as the colimit

(LY )n :≡ colimk→∞ ΩkYn+k.

For neither definition a careful proof of the adjunc-
tion has been given.

• We can now define the parametrized smash of spec-
tra as the spectrification of the parametrized smash
for prespectra. This should preserve cofiber se-
quences of spectra, in the sense that if

Ax→ Bx→ Cx

207



is a family of cofiber sequences of spectra indexed
by x : U∗, the following sequence is also a cofiber
sequence of spectra

((x : X)∧Ax)→ ((x : X)∧Bx)→ ((x : X)∧Cx)

• A sequence of spectra should be a fiber sequence
of spectra if and only if it is a cofiber sequence of
spectra. This is true classically, and should also
hold in HoTT.

• Assuming that all the above properties have been
proven, we can get the Atiyah-Hirzebruch spectral
sequence for reduced homology. Suppose given a
pointed type X and Y : X → Spectrum a family
of spectra. We can apply Theorem 5.3.7 to the
iterated fiber sequence

((x : X)∧ΣnH)→ ((x : X)∧‖Y x‖s)→ ((x : X)∧‖Y x‖s−1).

To satisfy the conditions for that theorem we need
to assume some conditions on X and/or Y . In
particular it is sufficient if Y is a family of trun-
cated and connected spectra, but weaker conditions
might also suffice. Using homological indexing (where
p and q have their sign reversed) we get

E2
p,q = πp+q(Bq)⇒ πp+q(Aγp+q).

Now we compute

πp+q(Bq) ' πp+q((x : X) ∧ ΣqHπq(Y x))
' H̃p+q(X;λx.ΣqHπq(Y x))
' H̃p(X;λx. πq(Y x))

208



and

πp+q(Ak) ' πp+q((x : X) ∧ ‖Y x‖k)
' πp+q((x : X)→ Y x)
' H̃p+q(X;λx. Y x).

This gives the desired spectral sequence:

E2
p,q = H̃p(X;λx. πq(Y x))⇒ H̃p+q(X;λx. Y x).

• We get the Atiyah-Hirzebruch spectral sequence for
unreduced homology in the same way as for coho-
mology, by applying the version for reduced homol-
ogy to X+ and Y+.

• We get the Serre spectral sequence for homology
also in the same way. Suppose given B : U and F :
B → U and a truncated spectrum Y . Applying the
Atiyah-Hirzebruch spectral sequence for unreduced
homology to the type B and the spectrum λb. Fb∧
Y we get

E2
p,q = Hp(B;λb. πq(Fb∧Y ))⇒ Hp+q(B;λb. Fb∧Y ).

The second page is what we want. For the ∞-page
we compute

Hp+q(B;λb. Fb→ Y ) = πp+q((b : B+) ∧ (F+b ∧ Y ))
= πp+q(((b : B+) ∧ F+b) ∧ Y )
= πp+q(((b : B)× Fb) ∧ Y )
= Hp+q((b : B)× Fb;Y ).

This gives the Serre spectral sequence for homol-
ogy:

E2
p,q = Hp(B;λb.Hq(Fb;Y ))⇒ Hp+q((b : B)×Fb;Y ).

209



Remark 5.5.3. We can also use the parametrized smash
to get a spectral sequence for reduced homology and re-
duced cohomology. Suppose given B : U∗ and a family
of types F : B → U∗ and a spectrum Y : Spectrum that
is k-truncated. Then we get the following two spectral
sequences

Ep,q
2 = H̃p(B;λb. H̃q(Fb;Y ))⇒ H̃p+q((b : B) ∧ Fb;Y );

E2
p,q = H̃p(B;λb. H̃q(Fb;Y ))⇒ H̃p+q((b : B) ∧ Fb;Y ).

For homology, the proof is the same as above. For co-
homology, we apply the Atiyah-Hirzebruch spectral se-
quence for reduced cohomology to the pointed typeB and
the family of spectra λb. Fb →∗ Y . We get the desired
spectral sequence by the adjunction between parametrized
smash and dependent pointed maps.

These spectral sequences generalize Theorem 5.4.12
and the corresponding version for homology: we get those
versions back when we add a point to B and F . Whether
this extra generality is useful is unknown.

5.6 Applications of Spectral Sequences
Classically, there are many applications of the Serre

and Atiyah-Hirzebruch spectral sequences. Here we will
list some of these applications, and give thoughts on how
to translate these results in HoTT. The results in this
section have not been formalized. Before we start, we
compute the cohomology of spheres.

210



Lemma 5.6.1. If n ≥ 1, then

Hk(Sn;A) =

A if k ∈ {0, n}
0 otherwise.

(5.6.2)

This is a special case of the universal coefficient the-
orem, which we do not have yet in HoTT. However, we
can prove these equalities directly from the definition of
cohomology.

证明. For k = 0 we have

H0(Sn;A) = ‖Sn → A‖0 = (Sn → A) = A,

where we use that Sn is 0-connected. For k 6= 0 we have

Hk(Sn;A) = H̃k(Sn+1;A) = H̃k(Sn;A) = ‖Sn →∗ K(A, k)‖0 = ‖ΩnK(A, k)‖0.

Now for n < k the type ΩnK(A, k) is 0-connected, hence
the result is contractible. For n = k the result is A, and
for n > k the type ΩnK(A, k) itself is contractible.

The first application is the path fibration. Suppose
given a simply connected pointed type B we have a map
1→ B that has fiber ΩB.28 In other words, we have the
fiber sequence

ΩB → 1→ B.

Now the Serre spectral sequence for cohomology gives
(say, with integer coefficients)

Ep,q
2 = Hp(B;Hq(ΩB))⇒ Hp+q(1).

28It is called the path fibration because classically to get a Serre
fibration we need to take the path space PB instead of 1.

211



Note that the ∞-page vanishes, except when p + q =
0, when the coefficient is Z. For ordinary cohomology
Hn is trivial for n < 0, which means that the second
page is only nontrivial in the first quadrant of the plane,
hence this is true for all pages, including the ∞-page.
Therefore, the∞-page has one group Z at the origin, and
trivial groups everywhere else, as shown in Figure 5.2.

p

q

0

1

2

0 1 2 3 4

Z

0

0

0

0

0

0

0

0

0

0

0

0

0

0

图 5.2: Ep,q
∞ for the path fibration.

This gives a relation between the cohomology of B
and the cohomology of ΩB. If we know the cohomology
for one of the spaces one of them, then we can sometimes
compute the cohomology from the other using this. Using
the Serre spectral sequence for homology, we have the
same relationship between the homology of B and the
homology of ΩB. The computations in the next example
will work exactly the same for homology.
Example 5.6.3. As an example, we can compute the co-
homology groups of B = K(Z, 2) (which is the complex
projective space CP∞). Its loop space is ΩK(Z, 2) =

212



K(Z, 1) = S1, and by Lemma 5.6.1 we have

Hn(S1) =

Z if n = 0, 1
0 otherwise.

The resulting second page of the spectral sequence is
shown in Figure 5.3, all other groups on the second page
are trivial. Note that the shown differentials are the only

p

q

0

1

0 1 2 3 4

H0(B)

H0(B)

H1(B)

H1(B)

H2(B)

H2(B)

H3(B)

H3(B)

H4(B)

H4(B)

图 5.3: Ep,q
2 for the path fibration of K(Z, 2).

nontrivial differentials on the second page, and all differ-
entials on all later pages are also trivial. This means that
E3 = E∞, depicted in Figure 5.2. Note that there are no
nontrivial differentials going in or out of the H0(B) and
H1(B) in the bottom line. This means that

H0(B) = E0,0
∞ = Z

and
H1(B) = E1,0

∞ .

All other groups displayed on the second page vanish
on the ∞-page. Therefore, all shown differentials must

213



be isomorphisms. This means that Hn+2(B) = Hn(B),
which shows that Hn(B) is Z for even n and 0 for odd n.

Another simple application of the Serre spectral se-
quence is to compute the homology and cohomology groups
of ΩSn, given in [? , Example 1.5]. In this case, we know
the (co)homology of the base space Sn, and from it we
can deduce the (co)homology of the loop space ΩSn. We
will do the computation here for cohomology.
Example 5.6.4. If we take the Serre spectral sequence for
the path fibration of B = Sn for n ≥ 2, then the second
page has entries

Ep,q
2 = Hp(Sn;Hq(ΩSn)) =

H
q(ΩSn) if p = 0, n

0 otherwise.

using Lemma 5.6.1. Therefore, the only nontrivial groups
are in the columns p = 0 and p = n. This means that by
looking at the degree of the differentials, the only nonzero
differentials can occur in page n, as shown in Figure 5.4.
Because all later differentials are trivial, En+1 = E∞,
which is depicted in Figure 5.2. This means that all dif-
ferentials on page n from the p = 0 column to the p = n

column must be isomorphisms, except for the differential
from (0, 0) to (n,−(n − 1)). Hence we can conclude by
induction that

Hk(ΩSn)

Z if n− 1 | k
0 otherwise.

(5.6.5)

As a generalization of Example 5.6.3, we can con-
struct the Gysin sequence from the Serre spectral se-
quence [? , Theorem 3.3.3]. The Gysin sequence for

214



p

q

0 n

0

n− 1

2(n− 1)

3(n− 1)

H0(ΩSn)

Hn−1(ΩSn)

H2(n−1)(ΩSn)

H3(n−1)(ΩSn)

H0(ΩSn)

Hn−1(ΩSn)

H2(n−1)(ΩSn)

H3(n−1)(ΩSn)

图 5.4: Ep,q
n for the path fibration of Sn.

homology states that if f : E → B is a pointed map with
fiber Sn−1 for n ≥ 2 and if B is simply connected, then
there exists a long exact sequence

· · · → Hi(E)→ Hi(B)→ Hi−n(B)→ Hi−1(E)→ · · · .

There is also an analogue for cohomology, which states
that under the same assumptions there exists a long exact
sequence of cohomology groups

· · · → H i−1(E)→ H i−n(B)→ H i(B)→ H i(E)→ · · · .

The proof given in [? , Theorem 3.3.3] works the same in
HoTT. An alternative construction of the Gysin sequence
in HoTT is given in [? , Section 6.1], which was used as
a main ingredient to compute π4(S3).

We can also generalize Example 5.6.4 to get the
Wang sequence. For homology this states that if E → Sn

215



is a pointed map for n ≥ 2 with fiber F , then there exists
a long exact sequence

· · · → Hi(F )→ Hi(E)→ Hi−n(F )→ Hi−1(F )→ · · · .

Again, a similar long exact sequence holds for cohomol-
ogy, and the proof given in [? , Theorem 3.3.6] works the
same in HoTT.

As another application, we can prove the Hurewicz
theorem from the Serre spectral sequence [? ]. The
Hurewicz theorem only holds for homology, and requires
the Serre spectral sequence for homology. The theorem
states that if X is a simply connected pointed type, n ≥ 2
and πq(X) is trivial for q < n, then Hq(X) = 0 for q < n

and Hn(X) = πn(X). For n = 1 the Hurewicz theorem
states that for a 0-connected pointed type X, the first
homology group H1(X) is the abelianization of π1(X).
In the proof given in the aforementioned reference, the
case for n = 1 needs to be proven separately, but then
the case for n ≥ 2 follows from that using the Serre spec-
tral sequence. Since the case for n = 1 seems easier than
the general case, this should be very helpful to prove the
Hurewicz theorem in HoTT.

An application for the Atiyah-Hirzebruch spectral
sequence would be to compute cohomology groups of gen-
eralized cohomology theories. One such generalized coho-
mology theory is K-theory. Although K-theory has not
been precisely defined yet in HoTT, one possible idea by
Ulrik Buchholtz is to define it using Snaith’s theorem [?
]. If we have defined K-theory, we could try to com-
pute its cohomology groups using the Atiyah-Hirzebruch
spectral sequence. With the current machinery, we can

216



compute the cohomology groups of all types that satisfy
weak pointed choice (cf. Definition 5.4.14), which proba-
bly includes all finite CW-complexes.

An application that is probably trickier in HoTT is
the Serre class theorem. A Serre class is a class C of
abelian groups such that for every short exact sequence
0 → A → B → C → 0 of abelian groups we have B ∈
C iff A,C ∈ C. In particular, any Serre class is closed
under taking subgroups and quotient groups. Classical
examples of Serre classes include

• finite abelian groups;

• finitely generated abelian groups;

• torsion abelian groups.

However, constructively, the first two classes are not closed
under either taking subgroups or quotient groups (torsion
abelian groups do form a Serre class constructively).

The Serre class theorem is a theorem about certain
Serre classes that satisfy some extra properties. This in-
clude the three examples mentioned above. If C is such a
Serre class and if X is a simply connected type,29 then the
theorem states that πn(X) ∈ C for all n iff Hn(X) ∈ C
for all n. More general is the Hurewicz theorem mod-
ulo a Serre class, which states that if πi(X) ∈ C for all
i < n, then the kernel and the cokernel of the Hurewicz
homomorphism h : πn(X)→ Hn(X) belong to C.

29or path-connected and abelian. A space X is abelian if the
action of π1(X) on πn(X) is trivial for all n ≥ 1.

217



As a corollary of the Serre class theorem, we know
that the homotopy groups of the spheres are finitely gen-
erated, since their homology groups are finitely gener-
ated. Moreover, the homotopy groups of simply con-
nected finite CW-complexes are also finitely generated,
using cellular cohomology [? ]. A classical proof of the
Serre class theorem can be found in [? , Section 1.1].

It is not straightforward to adapt the proof of the
Serre class theorem to a proof in HoTT. One difficulty
is that the classical proof uses the universal coefficient
theorem for homology. This theorem is not yet proven in
HoTT. The universal coefficient theorem relates the ho-
mology group Hn(X;A) with coefficients in any abelian
group A to the the homology group Hn(X) with integer
coefficients. There is also a dual universal coefficient the-
orem for cohomology that relates the cohomology group
Hn(X;A) with the homology group Hn(X). It is not
clear how to prove or even formulate the universal coef-
ficient theorem in HoTT. The universal coefficient the-
orem for homology uses the Tor functor, whose defini-
tion requires projective resolutions. Similarly, the uni-
versal coefficient theorem for cohomology uses the Ext
functor, whose definition requires injective resolutions.
Basic properties of projective and injective resolutions
are classically proven with the axiom of choice [? ], so
it is not clear whether we can prove the universal coef-
ficient theorem without the axiom of choice. Another
problem with proving the universal coefficient theorem is
that classically it is proven algebraically for chain com-
plexes. Since homology and cohomology groups of spaces
are defined as the (co)homology of a chain complex, the

218



universal coefficient theorem then applies to spaces. Even
if we could solve the issues with the axiom of choice, and
we could prove the universal coefficient theorem for chain
complexes in HoTT, it does not directly follow that it is
true for spaces, since these groups are not defined as the
(co)homology of chain complexes.30 Therefore, in HoTT,
it seems fruitful to prove the universal coefficient theo-
rem directly for spaces, using the definition in terms of
Eilenberg-MacLane spaces, but this is an open problem
as of now. A good first step might be to try to prove
a special case of the universal coefficient theorem where
the Tor and Ext functors vanish, although that will not
be sufficient to prove the Serre class theorem.

Proving the Serre class theorem in HoTT will be
tricky, and it might be necessary to reformulate or weaken
some notions to get a usable result in HoTT. If we man-
age to prove these results in HoTT, we can get a lot of
information about the homotopy groups of spheres. One
additional ingredient that is required is the fact that the
cup product structure of the cohomology groups respect
the Serre spectral sequence. From these ingredients we
can classically show the following:

• The groups πi(Sn) are finite for i > n, except for
π4k−1(S2k), which are the direct sum of Z and a
finite group [? , Theorem 1.21].

• For a prime p the p-torsion subgroup of πi(S3) is 0
for i < 2p and Zp for i = 2p [? , Example 1.18].

30Cellular (co)homology [? ] is defined as the (co)homology of
a chain complex, and therefore we could prove it for finite CW
complexes, but it would not follow for arbitrary types.

219



• From the two above results we can immediately
conclude that π4(S3) = Z2.

• Using additionally the localization of a space at a
prime, we can show that for p a prime, the p-torsion
subgroup of πi(Sn+3) is 0 for i < n+ 2p and Zp for
i = n+ 2p [? , Theorem 1.28].

• We can compute more homotopy groups of spheres
using significantly more machinery. For this we
need the EHP sequence, Steenrod squares and Serre’s
theorem, which computes the cohomology rings of
K(Z2, n) and K(Z, n) and K(Z2k , n) with coeffi-
cients in Z2. If we have all these results, we can
compute πn+i(Sn) for all n and i ≤ 3 [? , Theorem
1.40].

220



Conclusion

In this dissertation I have shown that homotopy type
theory is a practical language to prove involved theorems
in homotopy theory, most notably the construction of
two important spectral sequences: the Atiyah-Hirzebruch
and the Serre spectral sequences for cohomology. The
discovery of these spectral sequences in classical homo-
topy theory was an important milestone, and we expect
that the corresponding proof in HoTT will lead to many
useful corollaries in synthetic homotopy theory. That
said, many applications of these spectral sequences re-
quire more machinery, such as the universal coefficient
theorem, Serre classes and the Hurewicz theorem. The
first two of these three results might be problematic to
prove in HoTT, because of their dependence on the ax-
iom of choice. I hope that an adapted or weaker version
of these theorems can be found, which avoids the use
of the axiom of choice, or alternatively, that when look-
ing at their applications, we can avoid the use of choice.
For example, we cannot prove constructively that finitely
generated abelian groups form a Serre class, but it is con-
ceivable that we can still prove that all homotopy groups
of spheres are finitely generated without resorting to the

221



axiom of choice. That said, we could also assume the
axiom of choice and continue proving results in synthetic
homotopy theory using it. However, then the resulting
theorem would not hold anymore in all models of HoTT.

It would be interesting to see other spectral sequences
proven in HoTT, such as the Adams spectral sequence
and the Eilenberg-Moore spectral sequences [? ].

Thoughts on formalization
This dissertation also shows that homotopy type the-

ory provides a good language for the computer formaliza-
tion of results in homotopy theory.

Through the formal methods community there is a
strong desire that formal methods will be adopted in a
large scale by general mathematicians. The main bottle-
necks for this adoption are

(i) the necessary expertise of formalization in the proof
assistant of choice;

(ii) the vast number of proof assistant in existence;

(iii) the amount of work it takes to formalize mathemat-
ics compared to writing it on paper.

It definitely takes time to learn a proof assistant, famil-
iarize oneself with the library and get enough practice to
use a proof assistant efficiently. Moreover, in my experi-
ence, learning to use a proof assistant takes longer than
learning to use other programs, like LaTeX or Mathemat-
ica. Still, I do not think this is the main bottleneck to
the adoption of proof assistants. Various courses that

222



integrate the use of proof assistants have been taught,
and students taking those courses will get a level of pro-
ficiency of using that proof assistant.

The second concern is the number of proof assistants
in existence, each with a separate library and the near-
impossibility to translate theorems and proofs between
two proof assistants. There are translation procedures
between some proof assistants, such as [? ], but such
translations are often incomplete, and only specific to
two proof assistants.

However, I think the main bottleneck is the amount
of extra time it takes to formalize mathematics compared
to writing a paper proof. Rough estimates for the for-
malization time is about one week to formalize a page
of a mathematical paper or textbook [? ]. My experi-
ence with formalizing synthetic homotopy theory specifi-
cally is a little different. Paper proofs given in synthetic
homotopy theory are often quite detailed, and the tech-
niques used are often very close to the underlying type
theory. I would argue that this is necessary; we do not
have much experience with proving theorems in synthetic
homotopy theory yet, and it is not always clear which re-
sults are hard to prove. Some results turn out more dif-
ficult to prove than initially thought. For example, the
“basic property” of the smash product that it forms a 1-
coherent symmetric monoidal product (see Section 4.3)
was assumed with a vague proof sketch in [? ] to prove
π4(S3) = Z2, but this result is still open as of now. An-
other example is Theorem 3.3.26, which was originally
thought to be a basic result about colimits by Egbert Ri-
jke and me, but the proof turned out to be much harder

223



than expected.
Because paper proofs in synthetic homotopy theory

are often proven with many details, in my experience,
giving a fully formal proof is not much more work. In
cases where the formal proof is a lot more work, the pa-
per proof sometimes omitted showing the case of the path
constructor when inducting over a HIT, which is the hard-
est — but least enlightening — part of the proof. In the
paper proofs of this dissertation, I have also sometimes
omitted these steps, because they are tedious to work
through and not very enlightening. However, the formal
proofs (of course) contain all the details. For some theo-
rems the formalization did take substantially more work.
For the formalization of spectral sequences, a substan-
tial algebra library had to be developed, consisting of
basic group theory, ring theory, modules over a ring and
graded modules. This took many man-hours of work,
which would have no counterpart in a paper proof.

Another reason why formalization is more work, is
that necessarily such proofs have to be encoded in the
corresponding logic, intensional type theory. Most of the
time, this is straightforward, but in some cases it takes a
bit more work. Especially when dealing with sequences
of types, in intensional type theory one has to work ex-
plicitly with transports (or its relatives, like pathovers
or heterogenous equality), which is especially laborious
in the proof-relevant setting of HoTT. Sometimes an “en-
coding trick” is useful when dealing with these dependent
types. In this dissertation some of these tricks have been
given. In Section 4.1.1 we defined a chain complex over
an arbitrary successor structure, because we wanted to

224



not only index chain complexes over N or Z, but also
over N × fin3 or similar types, to get a more convenient
computational content. These successor structures also
turned out to be useful for spectra in Section 5.3, so that
we can apply the same notion to spectra indexed over
N and spectra indexed over Z. The reason that spec-
tra indexed over Z are useful (traditionally they are only
indexed over N) is that for certain definitions, such as
the homotopy group of a spectrum, no case-splits are re-
quired when they are indexed over Z. Another encoding
trick was given in the definition of graded morphisms.
In order to define the composition of graded morphisms
more easily, we defined the degree of a graded morphism
to be an automorphism of the indexing set. In order to
avoid dealing with transports everywhere, we defined a
graded morphism to act on a path in the indexing set,
see Section 5.1.

Formalizing in Lean is a fun activity, and Lean is
a good language for formalization. In Lean 2 one of the
main annoyances when formalizing was the unpredictabil-
ity of the elaborator, which was greatly improved in Lean
3. Another issue was the ability to simplify expressions.
There was a tactic esimp that simplified by evaluation,
but it was quite slow, and would sometimes use 99% of
the elaboration time of a proof. I do not have enough
experience with dsimp in Lean 3 to see whether it has
similar issues.

In 2016 Leonardo de Moura decided that he would
stop supporting homotopy type theory in Lean 3. It was
quite devastating to hear this. I am glad that Gabriel
Ebner has found a method to do homotopy type theory

225



in Lean 3 safely, by avoiding the use of Prop. Since then,
I have been slowly working on porting the Lean 2 HoTT
library to Lean 3, although the progress has been slow.
The main reasons for this are:

• The elaborator in Lean 3 is weaker to make it more
robust, which causes many proofs to break.

• Some tactics do not work without using Prop or the
Prop-valued equality. Gabriel Ebner has modified
the simp and rewrite tactic to work in HoTT. I
have written an induction-tactic, since the default
induction tactic does not allow custom induction
principles to eliminate to only non-Prop sorts.

• The notation ! has been removed in Lean 3. This
was used in Lean 2 to turn (some) explicit argu-
ments into implicit ones.

• There are many small differences in Lean 2 and
Lean 3 in syntax for tactics, proof styles, attributes,
universe levels and declarations. None of these is-
sues take much time to fix, but the sheer number
of them add up.

Despite this, a significant part of the library has been
ported, and I am planning to continue this so that Lean 3
(and later Lean 4) can be used to formalize results in
homotopy type theory.

The current implementation in Lean is probably not
the ultimate proof assistant for HoTT in the long-term.
Many cubical type theories have been developed over the
last few years, and a few proof assistants have been devel-
oped using a cubical type theory as their underlying logic.

226



Cubical type theory offers many advantages when reason-
ing about higher inductive types and when doing higher
path algebra, since more relations hold strictly. For ex-
ample, the computation rule of the induction principle
for a higher inductive type holds judgmentally in cubical
type theory. This is very convenient when working with
HITs, especially HITs with higher path constructors. It
is conceivable that a cubical type theory can be imple-
mented in Lean, although it will require some hacking
in the C++ code, and many features of Lean will need
to be modified to work well with the cubical structure.
This will be a big project, and it is probably smart not
do this project until the different variants of cubical type
theory have been studied more. In particular, current
versions of cubical type theory do not satisfy regularity,
which states that the induction principle for paths has
judgmental computation rules.31 Some constructions in
HoTT are done by doing a long string of path inductions,
and such proofs will be harder to reason with in cubical
type theory. That said, it would be interesting to per-
form some constructions of this dissertation in one of the
cubical type theories to see whether the proof would sig-
nificantly simplify. In particular the proofs in Section 3.2
would simplify when the induction principle of higher in-
ductive types reduces definitionally when applied to path
constructors.

31It is possible to have two notions of paths: a path type with
all the cubical structure, and an identity type with an induction
principle and a judgmental computation rule. However, in current
cubical type theories these cannot be the same type.

227



Acknowledgements

First and foremost I would like to thank my advisor
Jeremy Avigad, who was always ready to give useful feed-
back, proofread drafts of all my written work and pro-
vide support. Futhermore, I would like to thank Steve
Awodey for always being ready to answer any questions
I have about HoTT or category theory. I would like to
thank Mike Shulman for many helpful remarks and in-
sights whenever I show my work. I also want to thank
Ulrik Buchholtz, Egbert Rijke, Jakob von Raumer, Ste-
fano Piceghello and Kristina Sojakova for the collabora-
tions and discussions. I am grateful towards Leonardo de
Moura for all his help with getting me up to speed with
Lean, and answering all my stupid questions and ideas I
brought up early in the development of Lean. I would like
to thank Marc Bezem and Dan Christensen to invite me
for academic visits. More generally, I would like to thank
everyone in the HoTT community for maintaining such
a good research community. It is very nice to be part
of such a friendly and collaborative research community,
where it is normal to have unfinished projects on Github
or discuss half-baked ideas on a mailing list.

For moral support, I would like to thank my parents,

228



Peter van Doorn and Judith van Wakeren, for supporting
me during times when I was struggling. Dank jullie wel!
Lastly I would like to thank Cecilia Hornberger for the
moral support over the last months.

I gratefully acknowledge the support of the Air Force
Office of Scientific Research through MURI grant FA9550-
15-1-0053. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
AFOSR.

The author would like to thank the Isaac Newton
Institute for Mathematical Sciences, Cambridge, for sup-
port and hospitality during the programme Big Proof
where work on this paper was undertaken. This work
was supported by EPSRC grant no EP/K032208/1.

This material is based upon work supported by the
National Science Foundation under Grant Number DMS
1641020.

229



参考文献

230


	Front Matter
	Title Page
	目录

	1 Introduction
	2 Preliminaries
	2.1 Martin-Löf Type Theory
	2.1.1 Function Types
	2.1.2 Pair Types
	2.1.3 Universes
	2.1.4 Inductive Types

	2.2 Homotopy Type Theory
	2.2.1 Paths
	2.2.2 Equivalences
	2.2.3 More on paths
	2.2.4 Truncated Types
	2.2.5 Pointed Types
	2.2.6 Higher Inductive Types

	2.3 Lean

	3 Higher Inductive Types
	3.1 Propositional Truncation
	3.2 Non-recursive 2-HITs
	3.3 Colimits

	4 Homotopy Theory
	4.1 Computing pi_3(S^2)
	4.1.1 The long exact sequence of homotopy groups
	4.1.2 Computation of homotopy groups

	4.2 Eilenberg-MacLane Spaces
	4.2.1 Construction of Eilenberg-MacLane spaces
	4.2.2 Uniqueness
	4.2.3 Equivalence of categories

	4.3 The Smash Product
	4.3.1 The Category of Pointed Types
	4.3.2 Basic Properties of the Smash Product
	4.3.3 Adjunction
	4.3.4 Symmetric monoidal product


	5 The Serre Spectral Sequence
	5.1 Spectral Sequences
	5.2 Exact Couples
	5.3 Spectra
	5.4 Spectral Sequences for Cohomology
	5.5 Spectral Sequences for Homology
	5.6 Applications of Spectral Sequences

	Conclusion
	Acknowledgements
	Bibliography

