type-theory/src/Simple.agda
2023-05-08 18:56:59 -05:00

59 lines
1.2 KiB
Agda
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{-# OPTIONS --cubical #-}
open import Cubical.Foundations.Prelude
using (_≡_; refl; _∙_; _∎; cong; sym; fst; snd; _,_; ~_)
open import Cubical.Data.Empty as
open import Cubical.Foundations.Equiv using (isEquiv; equivProof; equiv-proof)
open import Relation.Nullary using (¬_)
open import Relation.Binary.Core using (Rel)
open import Data.Nat
open import Data.Bool
sanity : 1 + 1 2
sanity = refl
+-comm : (a b : ) a + b b + a
+-comm zero zero = refl
+-comm (suc a) zero = cong suc (+-comm a zero)
-- +-comm (suc a) zero = suc a + zero
-- ≡⟨ refl ⟩
-- -- suc n + m = suc (n + m)
-- suc (a + zero)
-- ≡⟨ cong suc (+-comm a zero) ⟩
-- suc (zero + a)
-- ≡⟨ refl ⟩
-- -- zero + m = m
-- suc a
-- ≡⟨ refl ⟩
-- zero + suc a
-- ∎
--
-- inner-eq : a ≡ b
-- cong app inner-eq : app a ≡ app b
-- a + b
-- _+_ : (a b : ) →
-- _+_+_+_ : (a b c d : ) →
-- _[_;_]
-- a [ 34 ; b ]
--
x : Bool
x = true
-- _&&_ : Bool → Bool → Bool
-- (x && true) : Bool
p : 2 + 3 3 + 2
p = refl
-- _+_ : Nat → Nat → Nat
-- zero + m = m
-- suc n + m = suc (n + m)
p2 : (x y : ) x + y y + x