2017-06-28 12:14:48 +00:00
|
|
|
|
import .spectrum .EM
|
|
|
|
|
|
2017-06-28 16:19:23 +00:00
|
|
|
|
-- TODO move this
|
2017-06-29 19:06:47 +00:00
|
|
|
|
open trunc_index nat
|
|
|
|
|
|
2017-06-28 16:19:23 +00:00
|
|
|
|
namespace int
|
|
|
|
|
|
2017-06-29 19:06:47 +00:00
|
|
|
|
definition maxm2 : ℤ → ℕ₋₂ :=
|
|
|
|
|
λ n, int.cases_on n trunc_index.of_nat
|
|
|
|
|
(λ m, nat.cases_on m -1 (λ a, -2))
|
|
|
|
|
|
|
|
|
|
attribute maxm2 [unfold 1]
|
|
|
|
|
|
|
|
|
|
definition maxm2_le_maxm0 (n : ℤ) : maxm2 n ≤ max0 n :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n n,
|
|
|
|
|
{ exact le.tr_refl n },
|
|
|
|
|
{ cases n with n,
|
|
|
|
|
{ exact le.step (le.tr_refl -1) },
|
|
|
|
|
{ exact minus_two_le 0 } }
|
|
|
|
|
end
|
|
|
|
|
|
2017-06-28 16:19:23 +00:00
|
|
|
|
definition max0_le_of_le {n : ℤ} {m : ℕ} (H : n ≤ of_nat m)
|
|
|
|
|
: nat.le (max0 n) m :=
|
|
|
|
|
begin
|
|
|
|
|
induction n with n n,
|
|
|
|
|
{ exact le_of_of_nat_le_of_nat H },
|
|
|
|
|
{ exact nat.zero_le m }
|
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
end int
|
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
|
open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM
|
2017-06-28 16:19:23 +00:00
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
|
namespace spectrum
|
|
|
|
|
|
2017-06-29 19:06:47 +00:00
|
|
|
|
definition ptrunc_maxm2_change_int {k l : ℤ} (X : Type*) (p : k = l)
|
|
|
|
|
: ptrunc (maxm2 k) X ≃* ptrunc (maxm2 l) X :=
|
|
|
|
|
pequiv_ap (λ n, ptrunc (maxm2 n) X) p
|
2017-06-28 22:02:09 +00:00
|
|
|
|
|
2017-06-29 19:06:47 +00:00
|
|
|
|
definition loop_ptrunc_maxm2_pequiv (k : ℤ) (X : Type*) :
|
|
|
|
|
Ω (ptrunc (maxm2 (k+1)) X) ≃* ptrunc (maxm2 k) (Ω X) :=
|
2017-06-28 12:14:48 +00:00
|
|
|
|
begin
|
|
|
|
|
induction k with k k,
|
2017-06-29 19:06:47 +00:00
|
|
|
|
{ exact loop_ptrunc_pequiv k X },
|
|
|
|
|
{ cases k with k,
|
|
|
|
|
{ exact loop_ptrunc_pequiv -1 X },
|
|
|
|
|
{ cases k with k,
|
|
|
|
|
{ exact loop_ptrunc_pequiv -2 X },
|
|
|
|
|
{ exact loop_pequiv_punit_of_is_set (pType.mk (trunc -2 X) (tr pt))
|
|
|
|
|
⬝e* (pequiv_punit_of_is_contr
|
|
|
|
|
(pType.mk (trunc -2 (Point X = Point X)) (tr idp))
|
|
|
|
|
(is_trunc_trunc -2 (Point X = Point X)))⁻¹ᵉ* } } }
|
2017-06-28 12:14:48 +00:00
|
|
|
|
end
|
|
|
|
|
|
2017-06-29 19:06:47 +00:00
|
|
|
|
definition is_trunc_of_is_trunc_maxm2 (k : ℤ) (X : Type)
|
|
|
|
|
: is_trunc (maxm2 k) X → is_trunc (max0 k) X :=
|
|
|
|
|
λ H, @is_trunc_of_le X _ _ (maxm2_le_maxm0 k) H
|
2017-06-28 12:14:48 +00:00
|
|
|
|
|
2017-06-28 14:21:11 +00:00
|
|
|
|
definition strunc [constructor] (k : ℤ) (E : spectrum) : spectrum :=
|
2017-06-29 19:06:47 +00:00
|
|
|
|
spectrum.MK (λ(n : ℤ), ptrunc (maxm2 (k + n)) (E n))
|
|
|
|
|
(λ(n : ℤ), ptrunc_pequiv_ptrunc (maxm2 (k + n)) (equiv_glue E n)
|
|
|
|
|
⬝e* (loop_ptrunc_maxm2_pequiv (k + n) (E (n+1)))⁻¹ᵉ*
|
|
|
|
|
⬝e* (loop_pequiv_loop
|
|
|
|
|
(ptrunc_maxm2_change_int _ (add.assoc k n 1))))
|
2017-06-28 12:14:48 +00:00
|
|
|
|
|
2017-06-28 14:21:11 +00:00
|
|
|
|
definition strunc_change_int [constructor] {k l : ℤ} (E : spectrum) (p : k = l) :
|
|
|
|
|
strunc k E →ₛ strunc l E :=
|
2017-06-28 12:14:48 +00:00
|
|
|
|
begin induction p, reflexivity end
|
|
|
|
|
|
2017-06-29 19:06:47 +00:00
|
|
|
|
definition is_trunc_maxm2_loop (A : pType) (k : ℤ)
|
|
|
|
|
: is_trunc (maxm2 (k + 1)) A → is_trunc (maxm2 k) (Ω A) :=
|
2017-06-28 14:21:11 +00:00
|
|
|
|
begin
|
2017-06-29 19:06:47 +00:00
|
|
|
|
intro H, induction k with k k,
|
2017-06-28 16:19:23 +00:00
|
|
|
|
{ apply is_trunc_loop, exact H },
|
|
|
|
|
{ cases k with k,
|
|
|
|
|
{ apply is_trunc_loop, exact H},
|
|
|
|
|
{ apply is_trunc_loop, cases k with k,
|
|
|
|
|
{ exact H },
|
|
|
|
|
{ apply is_trunc_succ, exact H } } }
|
|
|
|
|
end
|
|
|
|
|
|
2017-06-28 14:21:11 +00:00
|
|
|
|
definition is_strunc (k : ℤ) (E : spectrum) : Type :=
|
2017-06-29 19:06:47 +00:00
|
|
|
|
Π (n : ℤ), is_trunc (maxm2 (k + n)) (E n)
|
2017-06-28 14:21:11 +00:00
|
|
|
|
|
|
|
|
|
definition is_strunc_change_int {k l : ℤ} (E : spectrum) (p : k = l)
|
|
|
|
|
: is_strunc k E → is_strunc l E :=
|
|
|
|
|
begin induction p, exact id end
|
|
|
|
|
|
|
|
|
|
definition is_strunc_strunc (k : ℤ) (E : spectrum)
|
|
|
|
|
: is_strunc k (strunc k E) :=
|
2017-06-29 19:06:47 +00:00
|
|
|
|
λ n, is_trunc_trunc (maxm2 (k + n)) (E n)
|
|
|
|
|
|
|
|
|
|
definition is_trunc_maxm2_change_int {k l : ℤ} (X : pType) (p : k = l)
|
|
|
|
|
: is_trunc (maxm2 k) X → is_trunc (maxm2 l) X :=
|
|
|
|
|
by induction p; exact id
|
2017-06-28 14:21:11 +00:00
|
|
|
|
|
|
|
|
|
definition is_strunc_EM_spectrum (G : AbGroup)
|
|
|
|
|
: is_strunc 0 (EM_spectrum G) :=
|
|
|
|
|
begin
|
|
|
|
|
intro n, induction n with n n,
|
|
|
|
|
{ -- case ≥ 0
|
2017-06-29 19:06:47 +00:00
|
|
|
|
apply is_trunc_maxm2_change_int (EM G n) (zero_add n)⁻¹,
|
2017-06-28 14:21:11 +00:00
|
|
|
|
apply is_trunc_EM },
|
2017-06-28 16:19:23 +00:00
|
|
|
|
{ induction n with n IH,
|
2017-06-28 14:21:11 +00:00
|
|
|
|
{ -- case = -1
|
|
|
|
|
apply is_trunc_loop, exact ab_group.is_set_carrier G },
|
|
|
|
|
{ -- case < -1
|
2017-06-29 19:06:47 +00:00
|
|
|
|
apply is_trunc_maxm2_loop, exact IH }}
|
2017-06-28 14:21:11 +00:00
|
|
|
|
end
|
|
|
|
|
|
|
|
|
|
definition trivial_shomotopy_group_of_is_strunc (E : spectrum)
|
|
|
|
|
{n k : ℤ} (K : is_strunc n E) (H : n < k)
|
|
|
|
|
: is_contr (πₛ[k] E) :=
|
2017-06-28 16:19:23 +00:00
|
|
|
|
let m := n + (2 - k) in
|
|
|
|
|
have I : m < 2, from
|
|
|
|
|
calc
|
|
|
|
|
m = (2 - k) + n : int.add_comm n (2 - k)
|
|
|
|
|
... < (2 - k) + k : add_lt_add_left H (2 - k)
|
|
|
|
|
... = 2 : sub_add_cancel 2 k,
|
|
|
|
|
@trivial_homotopy_group_of_is_trunc (E (2 - k)) (max0 m) 2
|
2017-06-29 19:06:47 +00:00
|
|
|
|
(is_trunc_of_is_trunc_maxm2 m (E (2 - k)) (K (2 - k)))
|
2017-06-28 16:19:23 +00:00
|
|
|
|
(nat.succ_le_succ (max0_le_of_le (le_sub_one_of_lt I)))
|
2017-06-28 14:21:11 +00:00
|
|
|
|
|
2017-06-28 22:02:09 +00:00
|
|
|
|
definition str [constructor] (k : ℤ) (E : spectrum) : E →ₛ strunc k E :=
|
2017-06-29 19:06:47 +00:00
|
|
|
|
smap.mk (λ n, ptr (maxm2 (k + n)) (E n))
|
|
|
|
|
(λ n, sorry)
|
2017-06-28 22:02:09 +00:00
|
|
|
|
|
2017-06-28 12:14:48 +00:00
|
|
|
|
end spectrum
|