Spectral/homotopy/strunc.hlean

53 lines
1.7 KiB
Text
Raw Normal View History

import .spectrum .EM
open int trunc eq is_trunc lift unit pointed equiv is_equiv algebra EM
namespace spectrum
definition trunc_int.{u} (k : ) (X : Type.{u}) : Type.{u} :=
begin
induction k with k k, exact trunc k X,
cases k with k, exact trunc -1 X,
exact lift unit
end
definition ptrunc_int.{u} (k : ) (X : pType.{u}) : pType.{u} :=
begin
induction k with k k, exact ptrunc k X,
exact plift punit
end
definition ptrunc_int_pequiv_ptrunc_int (k : ) {X Y : Type*} (e : X ≃* Y) :
ptrunc_int k X ≃* ptrunc_int k Y :=
begin
induction k with k k,
exact ptrunc_pequiv_ptrunc k e,
exact !pequiv_plift⁻¹ᵉ* ⬝e* !pequiv_plift
end
definition ptrunc_int_change_int {k l : } (X : Type*) (p : k = l) :
ptrunc_int k X ≃* ptrunc_int l X :=
pequiv_ap (λn, ptrunc_int n X) p
definition loop_ptrunc_int_pequiv (k : ) (X : Type*) :
Ω (ptrunc_int (k+1) X) ≃* ptrunc_int k (Ω X) :=
begin
induction k with k k,
exact loop_ptrunc_pequiv k X,
cases k with k,
change Ω (ptrunc 0 X) ≃* plift punit,
exact !loop_pequiv_punit_of_is_set ⬝e* !pequiv_plift,
exact loop_pequiv_loop !pequiv_plift⁻¹ᵉ* ⬝e* !loop_punit ⬝e* !pequiv_plift
end
definition strunc_int [constructor] (k : ) (E : spectrum) : spectrum :=
spectrum.MK (λ(n : ), ptrunc_int (k + n) (E n))
(λ(n : ), ptrunc_int_pequiv_ptrunc_int (k + n) (equiv_glue E n) ⬝e*
(loop_ptrunc_int_pequiv (k + n) (E (n+1)))⁻¹ᵉ* ⬝e*
loop_pequiv_loop (ptrunc_int_change_int _ (add.assoc k n 1)))
definition strunc_int_change_int [constructor] {k l : } (E : spectrum) (p : k = l) :
strunc_int k E →ₛ strunc_int l E :=
begin induction p, reflexivity end
end spectrum