Spectral/homotopy/LES_of_homotopy_groups_old.hlean

765 lines
31 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
The old formalization of the LES of homotopy groups, where all the odd levels have a composition
with negation
-/
import homotopy.LES_of_homotopy_groups
open eq pointed sigma fiber equiv is_equiv sigma.ops is_trunc nat trunc algebra function
/--------------
PART 1 is the same as the new formalization
--------------/
namespace chain_complex
namespace old
universe variable u
variables {X Y : pType.{u}} (f : X →* Y) (n : )
include f
/--------------
PART 2
--------------/
/- Now we are ready to define the long exact sequence of homotopy groups.
First we define its carrier -/
definition homotopy_groups : → Type*
| 0 := Y
| 1 := X
| 2 := pfiber f
| (k+3) := Ω (homotopy_groups k)
definition homotopy_groups_add3 [unfold_full] :
homotopy_groups f (n+3) = Ω (homotopy_groups f n) :=
by reflexivity
definition homotopy_groups_mul3
: Πn, homotopy_groups f (3 * n) = Ω[n] Y :> Type*
| 0 := proof rfl qed
| (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3 k) qed
definition homotopy_groups_mul3add1
: Πn, homotopy_groups f (3 * n + 1) = Ω[n] X :> Type*
| 0 := by reflexivity
| (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3add1 k) qed
definition homotopy_groups_mul3add2
: Πn, homotopy_groups f (3 * n + 2) = Ω[n] (pfiber f) :> Type*
| 0 := by reflexivity
| (k+1) := proof ap (λX, Ω X) (homotopy_groups_mul3add2 k) qed
/- The maps between the homotopy groups -/
definition homotopy_groups_fun
: Π(n : ), homotopy_groups f (n+1) →* homotopy_groups f n
| 0 := proof f qed
| 1 := proof ppoint f qed
| 2 := proof boundary_map f qed
| 3 := proof ap1 f ∘* pinverse qed
| 4 := proof ap1 (ppoint f) ∘* pinverse qed
| 5 := proof ap1 (boundary_map f) ∘* pinverse qed
| (k+6) := proof ap1 (ap1 (homotopy_groups_fun k)) qed
definition homotopy_groups_fun_add6 [unfold_full] :
homotopy_groups_fun f (n + 6) = ap1 (ap1 (homotopy_groups_fun f n)) :=
proof idp qed
/- this is a simpler defintion of the functions, but which are the same as the previous ones
(there is a pointed homotopy) -/
definition homotopy_groups_fun'
: Π(n : ), homotopy_groups f (n+1) →* homotopy_groups f n
| 0 := proof f qed
| 1 := proof ppoint f qed
| 2 := proof boundary_map f qed
| (k+3) := proof ap1 (homotopy_groups_fun' k) ∘* pinverse qed
definition homotopy_groups_fun'_add3 [unfold_full] :
homotopy_groups_fun' f (n+3) = ap1 (homotopy_groups_fun' f n) ∘* pinverse :=
proof idp qed
theorem homotopy_groups_fun_eq
: Π(n : ), homotopy_groups_fun f n ~* homotopy_groups_fun' f n
| 0 := by reflexivity
| 1 := by reflexivity
| 2 := by reflexivity
| 3 := by reflexivity
| 4 := by reflexivity
| 5 := by reflexivity
| (k+6) :=
begin
rewrite [homotopy_groups_fun_add6 f k],
replace (k + 6) with (k + 3 + 3),
rewrite [homotopy_groups_fun'_add3 f (k+3)],
rewrite [homotopy_groups_fun'_add3 f k],
refine _ ⬝* pwhisker_right _ !ap1_compose⁻¹*,
refine _ ⬝* !passoc⁻¹*,
refine !comp_pid⁻¹* ⬝* _,
refine pconcat2 _ _,
/- Currently ap1_phomotopy is defined using function extensionality -/
{ apply ap1_phomotopy, apply pap ap1, apply homotopy_groups_fun_eq},
{ refine _ ⬝* (pwhisker_right _ ap1_pinverse)⁻¹*, fapply phomotopy.mk,
{ intro q, esimp, exact !inv_inv⁻¹},
{ reflexivity}}
end
definition homotopy_groups_fun_add3 :
homotopy_groups_fun f (n + 3) ~* ap1 (homotopy_groups_fun f n) ∘* pinverse :=
begin
refine homotopy_groups_fun_eq f (n+3) ⬝* _,
exact pwhisker_right _ (ap1_phomotopy (homotopy_groups_fun_eq f n)⁻¹*),
end
definition fiber_sequence_pequiv_homotopy_groups :
Πn, fiber_sequence_carrier f n ≃* homotopy_groups f n
| 0 := by reflexivity
| 1 := by reflexivity
| 2 := by reflexivity
| (k+3) :=
begin
refine fiber_sequence_carrier_pequiv f k ⬝e* _,
apply loop_pequiv_loop,
exact fiber_sequence_pequiv_homotopy_groups k
end
definition fiber_sequence_pequiv_homotopy_groups_add3
: fiber_sequence_pequiv_homotopy_groups f (n + 3) =
ap1 (fiber_sequence_pequiv_homotopy_groups f n) ∘* fiber_sequence_carrier_pequiv f n :=
by reflexivity
definition fiber_sequence_pequiv_homotopy_groups_3_phomotopy
: fiber_sequence_pequiv_homotopy_groups f 3 ~* fiber_sequence_carrier_pequiv f 0 :=
begin
refine fiber_sequence_pequiv_homotopy_groups_add3 f 0 ⬝p* _,
refine pwhisker_right _ ap1_id ⬝* _,
apply pid_comp
end
theorem fiber_sequence_phomotopy_homotopy_groups' :
Π(n : ),
fiber_sequence_pequiv_homotopy_groups f n ∘* fiber_sequence_fun f n ~*
homotopy_groups_fun' f n ∘* fiber_sequence_pequiv_homotopy_groups f (n + 1)
| 0 := by reflexivity
| 1 := by reflexivity
| 2 :=
begin
refine !pid_comp ⬝* _,
replace homotopy_groups_fun' f 2 with boundary_map f,
refine _ ⬝* pwhisker_left _ (fiber_sequence_pequiv_homotopy_groups_3_phomotopy f)⁻¹*,
apply phomotopy_of_pinv_right_phomotopy,
reflexivity
end
| (k+3) :=
begin
replace (k + 3 + 1) with (k + 1 + 3),
rewrite [fiber_sequence_pequiv_homotopy_groups_add3 f k,
fiber_sequence_pequiv_homotopy_groups_add3 f (k+1)],
refine !passoc ⬝* _,
refine pwhisker_left _ (fiber_sequence_fun_phomotopy f k) ⬝* _,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right,
rewrite [homotopy_groups_fun'_add3],
refine _ ⬝* !passoc⁻¹*,
refine _ ⬝* pwhisker_left _ !ap1_compose_pinverse,
refine !passoc⁻¹* ⬝* _ ⬝* !passoc,
apply pwhisker_right,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose,
apply ap1_phomotopy,
exact fiber_sequence_phomotopy_homotopy_groups' k
end
theorem fiber_sequence_phomotopy_homotopy_groups (n : )
(x : fiber_sequence_carrier f (n + 1)) :
fiber_sequence_pequiv_homotopy_groups f n (fiber_sequence_fun f n x) =
homotopy_groups_fun f n (fiber_sequence_pequiv_homotopy_groups f (n + 1) x) :=
begin
refine fiber_sequence_phomotopy_homotopy_groups' f n x ⬝ _,
exact (homotopy_groups_fun_eq f n _)⁻¹
end
definition type_LES_of_homotopy_groups [constructor] : type_chain_complex + :=
transfer_type_chain_complex
(fiber_sequence f)
(homotopy_groups_fun f)
(fiber_sequence_pequiv_homotopy_groups f)
(fiber_sequence_phomotopy_homotopy_groups f)
definition is_exact_type_LES_of_homotopy_groups : is_exact_t (type_LES_of_homotopy_groups f) :=
begin
intro n,
apply is_exact_at_t_transfer,
apply is_exact_fiber_sequence
end
/- the long exact sequence of homotopy groups -/
definition LES_of_homotopy_groups [constructor] : chain_complex + :=
trunc_chain_complex
(transfer_type_chain_complex
(fiber_sequence f)
(homotopy_groups_fun f)
(fiber_sequence_pequiv_homotopy_groups f)
(fiber_sequence_phomotopy_homotopy_groups f))
/- the fiber sequence is exact -/
definition is_exact_LES_of_homotopy_groups : is_exact (LES_of_homotopy_groups f) :=
begin
intro n,
apply is_exact_at_trunc,
apply is_exact_type_LES_of_homotopy_groups
end
/- for a numeral, the carrier of the fiber sequence is definitionally what we want
(as pointed sets) -/
example : LES_of_homotopy_groups f 6 = π*[2] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups f 7 = π*[2] X :> Set* := by reflexivity
example : LES_of_homotopy_groups f 8 = π*[2] (pfiber f) :> Set* := by reflexivity
/- for a numeral, the functions of the fiber sequence is definitionally what we want
(as pointed function). All these functions have at most one "pinverse" in them, and these
inverses are inside the π→*[2*k].
-/
example : cc_to_fn (LES_of_homotopy_groups f) 6 = π→*[2] f
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 7 = π→*[2] (ppoint f)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 8 = π→*[2] (boundary_map f)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 9 = π→*[2] (ap1 f ∘* pinverse)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 10 = π→*[2] (ap1 (ppoint f) ∘* pinverse)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 11 = π→*[2] (ap1 (boundary_map f) ∘* pinverse)
:> (_ →* _) := by reflexivity
example : cc_to_fn (LES_of_homotopy_groups f) 12 = π→*[4] f
:> (_ →* _) := by reflexivity
/- the carrier of the fiber sequence is what we want for natural numbers of the form
3n, 3n+1 and 3n+2 -/
definition LES_of_homotopy_groups_mul3 (n : )
: LES_of_homotopy_groups f (3 * n) = π*[n] Y :> Set* :=
begin
apply ptrunctype_eq_of_pType_eq,
exact ap (ptrunc 0) (homotopy_groups_mul3 f n)
end
definition LES_of_homotopy_groups_mul3add1 (n : )
: LES_of_homotopy_groups f (3 * n + 1) = π*[n] X :> Set* :=
begin
apply ptrunctype_eq_of_pType_eq,
exact ap (ptrunc 0) (homotopy_groups_mul3add1 f n)
end
definition LES_of_homotopy_groups_mul3add2 (n : )
: LES_of_homotopy_groups f (3 * n + 2) = π*[n] (pfiber f) :> Set* :=
begin
apply ptrunctype_eq_of_pType_eq,
exact ap (ptrunc 0) (homotopy_groups_mul3add2 f n)
end
definition LES_of_homotopy_groups_mul3' (n : )
: LES_of_homotopy_groups f (3 * n) = π*[n] Y :> Type :=
begin
exact ap (ptrunc 0) (homotopy_groups_mul3 f n)
end
definition LES_of_homotopy_groups_mul3add1' (n : )
: LES_of_homotopy_groups f (3 * n + 1) = π*[n] X :> Type :=
begin
exact ap (ptrunc 0) (homotopy_groups_mul3add1 f n)
end
definition LES_of_homotopy_groups_mul3add2' (n : )
: LES_of_homotopy_groups f (3 * n + 2) = π*[n] (pfiber f) :> Type :=
begin
exact ap (ptrunc 0) (homotopy_groups_mul3add2 f n)
end
definition group_LES_of_homotopy_groups (n : ) : group (LES_of_homotopy_groups f (n + 3)) :=
group_homotopy_group 0 (homotopy_groups f n)
definition comm_group_LES_of_homotopy_groups (n : ) : comm_group (LES_of_homotopy_groups f (n + 6)) :=
comm_group_homotopy_group 0 (homotopy_groups f n)
end old end chain_complex
open group prod succ_str fin
/--------------
PART 3
--------------/
namespace chain_complex namespace old
section
universe variable u
parameters {X Y : pType.{u}} (f : X →* Y)
definition homotopy_groups2 [reducible] : +6 → Type*
| (n, fin.mk 0 H) := Ω[2*n] Y
| (n, fin.mk 1 H) := Ω[2*n] X
| (n, fin.mk 2 H) := Ω[2*n] (pfiber f)
| (n, fin.mk 3 H) := Ω[2*n + 1] Y
| (n, fin.mk 4 H) := Ω[2*n + 1] X
| (n, fin.mk k H) := Ω[2*n + 1] (pfiber f)
definition homotopy_groups2_add1 (n : ) : Π(x : fin (succ 5)),
2016-04-26 20:07:15 +00:00
homotopy_groups2 (n+1, x) = Ω (Ω(homotopy_groups2 (n, x)))
| (fin.mk 0 H) := by reflexivity
| (fin.mk 1 H) := by reflexivity
| (fin.mk 2 H) := by reflexivity
| (fin.mk 3 H) := by reflexivity
| (fin.mk 4 H) := by reflexivity
| (fin.mk 5 H) := by reflexivity
| (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun2 : Π(n : +6), homotopy_groups2 (S n) →* homotopy_groups2 n
| (n, fin.mk 0 H) := proof Ω→[2*n] f qed
| (n, fin.mk 1 H) := proof Ω→[2*n] (ppoint f) qed
| (n, fin.mk 2 H) :=
proof Ω→[2*n] (boundary_map f) ∘* pcast (loop_space_succ_eq_in Y (2*n)) qed
| (n, fin.mk 3 H) := proof Ω→[2*n + 1] f ∘* pinverse qed
| (n, fin.mk 4 H) := proof Ω→[2*n + 1] (ppoint f) ∘* pinverse qed
| (n, fin.mk 5 H) :=
proof (Ω→[2*n + 1] (boundary_map f) ∘* pinverse) ∘* pcast (loop_space_succ_eq_in Y (2*n+1)) qed
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun2_add1_0 (n : ) (H : 0 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 0 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 0 H))) :=
by reflexivity
definition homotopy_groups_fun2_add1_1 (n : ) (H : 1 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 1 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 1 H))) :=
by reflexivity
definition homotopy_groups_fun2_add1_2 (n : ) (H : 2 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 2 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 2 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
refine !pcast_ap_loop_space ⬝* ap1_phomotopy !pcast_ap_loop_space,
end
definition homotopy_groups_fun2_add1_3 (n : ) (H : 3 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 3 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 3 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹*
end
definition homotopy_groups_fun2_add1_4 (n : ) (H : 4 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 4 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 4 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹*
end
definition homotopy_groups_fun2_add1_5 (n : ) (H : 5 < succ 5)
: homotopy_groups_fun2 (n+1, fin.mk 5 H) ~*
cast proof idp qed ap1 (ap1 (homotopy_groups_fun2 (n, fin.mk 5 H))) :=
begin
esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pconcat2,
{ esimp, refine _ ⬝* (ap1_phomotopy !ap1_compose)⁻¹*, refine _ ⬝* !ap1_compose⁻¹*,
apply pwhisker_left,
exact ap1_pinverse⁻¹* ⬝* ap1_phomotopy !ap1_pinverse⁻¹*},
{ refine !pcast_ap_loop_space ⬝* ap1_phomotopy !pcast_ap_loop_space}
end
definition nat_of_str [unfold 2] [reducible] {n : } : × fin (succ n) → :=
λx, succ n * pr1 x + val (pr2 x)
definition str_of_nat {n : } : × fin (succ n) :=
λm, (m / (succ n), mk_mod n m)
definition nat_of_str_6S [unfold 2] [reducible]
: Π(x : stratified + 5), nat_of_str x + 1 = nat_of_str (@S (stratified + 5) x)
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := by reflexivity
| (n, fin.mk 3 H) := by reflexivity
| (n, fin.mk 4 H) := by reflexivity
| (n, fin.mk 5 H) := by reflexivity
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition fin_prod_nat_equiv_nat [constructor] (n : ) : × fin (succ n) ≃ :=
equiv.MK nat_of_str str_of_nat
abstract begin
intro m, unfold [nat_of_str, str_of_nat, mk_mod],
refine _ ⬝ (eq_div_mul_add_mod m (succ n))⁻¹,
rewrite [mul.comm]
end end
abstract begin
intro x, cases x with m k,
cases k with k H,
apply prod_eq: esimp [str_of_nat],
{ rewrite [add.comm, add_mul_div_self_left _ _ (!zero_lt_succ),
div_eq_zero_of_lt H, zero_add]},
{ apply eq_of_veq, esimp [mk_mod],
rewrite [add.comm, add_mul_mod_self_left, mod_eq_of_lt H]}
end end
/-
note: in the following theorem the (n+1) case is 6 times the same,
so maybe this can be simplified
-/
definition homotopy_groups2_pequiv' : Π(n : ) (x : fin (nat.succ 5)),
homotopy_groups f (nat_of_str (n, x)) ≃* homotopy_groups2 (n, x)
| 0 (fin.mk 0 H) := by reflexivity
| 0 (fin.mk 1 H) := by reflexivity
| 0 (fin.mk 2 H) := by reflexivity
| 0 (fin.mk 3 H) := by reflexivity
| 0 (fin.mk 4 H) := by reflexivity
| 0 (fin.mk 5 H) := by reflexivity
| (n+1) (fin.mk 0 H) :=
begin
-- uncomment the next two lines to have prettier subgoals
-- esimp, replace (succ 5 * (n + 1) + 0) with (6*n+3+3),
-- rewrite [+homotopy_groups_add3, homotopy_groups2_add1],
apply loop_pequiv_loop, apply loop_pequiv_loop,
rexact homotopy_groups2_pequiv' n (fin.mk 0 H)
end
| (n+1) (fin.mk 1 H) :=
begin
apply loop_pequiv_loop, apply loop_pequiv_loop,
rexact homotopy_groups2_pequiv' n (fin.mk 1 H)
end
| (n+1) (fin.mk 2 H) :=
begin
apply loop_pequiv_loop, apply loop_pequiv_loop,
rexact homotopy_groups2_pequiv' n (fin.mk 2 H)
end
| (n+1) (fin.mk 3 H) :=
begin
apply loop_pequiv_loop, apply loop_pequiv_loop,
rexact homotopy_groups2_pequiv' n (fin.mk 3 H)
end
| (n+1) (fin.mk 4 H) :=
begin
apply loop_pequiv_loop, apply loop_pequiv_loop,
rexact homotopy_groups2_pequiv' n (fin.mk 4 H)
end
| (n+1) (fin.mk 5 H) :=
begin
apply loop_pequiv_loop, apply loop_pequiv_loop,
rexact homotopy_groups2_pequiv' n (fin.mk 5 H)
end
| n (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups2_pequiv : Π(x : +6),
homotopy_groups f (nat_of_str x) ≃* homotopy_groups2 x
| (n, x) := homotopy_groups2_pequiv' n x
/- all cases where n>0 are basically the same -/
definition homotopy_groups_fun2_phomotopy (x : +6) :
homotopy_groups2_pequiv x ∘* homotopy_groups_fun f (nat_of_str x) ~*
(homotopy_groups_fun2 x ∘* homotopy_groups2_pequiv (S x))
∘* pcast (ap (homotopy_groups f) (nat_of_str_6S x)) :=
begin
cases x with n x, cases x with k H,
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 1,
cases k with k, rotate 1, cases k with k, rotate 1, cases k with k, rotate 2,
{ /-k=0-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_0)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=1-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_1)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=2-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
refine _ ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_2)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=3-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_3)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=4-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹* ⬝* !comp_pid⁻¹*,
reflexivity},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_4)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=5-/
induction n with n IH,
{ refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !comp_pid⁻¹* ⬝* pconcat2 _ _,
{ exact (comp_pid (ap1 (boundary_map f) ∘* pinverse))⁻¹*},
{ refine cast (ap (λx, _ ~* loop_pequiv_loop x) !loop_pequiv_loop_rfl)⁻¹ _,
refine cast (ap (λx, _ ~* x) !loop_pequiv_loop_rfl)⁻¹ _, reflexivity}},
{ refine _ ⬝* !comp_pid⁻¹*,
refine _ ⬝* pwhisker_right _ (!homotopy_groups_fun2_add1_5)⁻¹*,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
refine !ap1_compose⁻¹* ⬝* _ ⬝* !ap1_compose, apply ap1_phomotopy,
exact IH ⬝* !comp_pid}},
{ /-k=k'+6-/ exfalso, apply lt_le_antisymm H, apply le_add_left}
end
definition type_LES_of_homotopy_groups2 [constructor] : type_chain_complex +6 :=
transfer_type_chain_complex2
(type_LES_of_homotopy_groups f)
!fin_prod_nat_equiv_nat
nat_of_str_6S
@homotopy_groups_fun2
@homotopy_groups2_pequiv
begin
intro m x,
refine homotopy_groups_fun2_phomotopy m x ⬝ _,
apply ap (homotopy_groups_fun2 m), apply ap (homotopy_groups2_pequiv (S m)),
esimp, exact ap010 cast !ap_compose⁻¹ x
end
definition is_exact_type_LES_of_homotopy_groups2 : is_exact_t (type_LES_of_homotopy_groups2) :=
begin
intro n,
apply is_exact_at_t_transfer2,
apply is_exact_type_LES_of_homotopy_groups
end
definition LES_of_homotopy_groups2 [constructor] : chain_complex +6 :=
trunc_chain_complex type_LES_of_homotopy_groups2
/--------------
PART 4
--------------/
definition homotopy_groups3 [reducible] : +6 → Set*
| (n, fin.mk 0 H) := π*[2*n] Y
| (n, fin.mk 1 H) := π*[2*n] X
| (n, fin.mk 2 H) := π*[2*n] (pfiber f)
| (n, fin.mk 3 H) := π*[2*n + 1] Y
| (n, fin.mk 4 H) := π*[2*n + 1] X
| (n, fin.mk k H) := π*[2*n + 1] (pfiber f)
definition homotopy_groups3eq2 [reducible]
: Π(n : +6), ptrunc 0 (homotopy_groups2 n) ≃* homotopy_groups3 n
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := by reflexivity
| (n, fin.mk 3 H) := by reflexivity
| (n, fin.mk 4 H) := by reflexivity
| (n, fin.mk 5 H) := by reflexivity
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun3 : Π(n : +6), homotopy_groups3 (S n) →* homotopy_groups3 n
| (n, fin.mk 0 H) := proof π→*[2*n] f qed
| (n, fin.mk 1 H) := proof π→*[2*n] (ppoint f) qed
| (n, fin.mk 2 H) :=
proof π→*[2*n] (boundary_map f) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n))) qed
| (n, fin.mk 3 H) := proof π→*[2*n + 1] f ∘* tinverse qed
| (n, fin.mk 4 H) := proof π→*[2*n + 1] (ppoint f) ∘* tinverse qed
| (n, fin.mk 5 H) :=
proof (π→*[2*n + 1] (boundary_map f) ∘* tinverse)
∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n+1))) qed
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition homotopy_groups_fun3eq2 [reducible]
: Π(n : +6), homotopy_groups3eq2 n ∘* ptrunc_functor 0 (homotopy_groups_fun2 n) ~*
homotopy_groups_fun3 n ∘* homotopy_groups3eq2 (S n)
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pcast,
end
| (n, fin.mk 3 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pinverse
end
| (n, fin.mk 4 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pinverse
end
| (n, fin.mk 5 H) :=
begin
refine !pid_comp ⬝* _ ⬝* !comp_pid⁻¹*,
refine !ptrunc_functor_pcompose ⬝* _,
apply pconcat2,
{ refine !ptrunc_functor_pcompose ⬝* _,
apply pwhisker_left, apply ptrunc_functor_pinverse},
{ apply ptrunc_functor_pcast}
end
| (n, fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition LES_of_homotopy_groups3 [constructor] : chain_complex +6 :=
transfer_chain_complex
LES_of_homotopy_groups2
homotopy_groups_fun3
homotopy_groups3eq2
homotopy_groups_fun3eq2
definition is_exact_LES_of_homotopy_groups3 : is_exact (LES_of_homotopy_groups3) :=
begin
intro n,
apply is_exact_at_transfer,
apply is_exact_at_trunc,
apply is_exact_type_LES_of_homotopy_groups2
end
end
open is_trunc
universe variable u
variables {X Y : pType.{u}} (f : X →* Y) (n : )
include f
/- the carrier of the fiber sequence is definitionally what we want (as pointed sets) -/
example : LES_of_homotopy_groups3 f (str_of_nat 6) = π*[2] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 7) = π*[2] X :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 8) = π*[2] (pfiber f) :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 9) = π*[3] Y :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 10) = π*[3] X :> Set* := by reflexivity
example : LES_of_homotopy_groups3 f (str_of_nat 11) = π*[3] (pfiber f) :> Set* := by reflexivity
definition LES_of_homotopy_groups3_0 : LES_of_homotopy_groups3 f (n, 0) = π*[2*n] Y :=
by reflexivity
definition LES_of_homotopy_groups3_1 : LES_of_homotopy_groups3 f (n, 1) = π*[2*n] X :=
by reflexivity
definition LES_of_homotopy_groups3_2 : LES_of_homotopy_groups3 f (n, 2) = π*[2*n] (pfiber f) :=
by reflexivity
definition LES_of_homotopy_groups3_3 : LES_of_homotopy_groups3 f (n, 3) = π*[2*n + 1] Y :=
by reflexivity
definition LES_of_homotopy_groups3_4 : LES_of_homotopy_groups3 f (n, 4) = π*[2*n + 1] X :=
by reflexivity
definition LES_of_homotopy_groups3_5 : LES_of_homotopy_groups3 f (n, 5) = π*[2*n + 1] (pfiber f):=
by reflexivity
/- the functions of the fiber sequence is definitionally what we want (as pointed function).
-/
definition LES_of_homotopy_groups_fun3_0 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 0) = π→*[2*n] f :=
by reflexivity
definition LES_of_homotopy_groups_fun3_1 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 1) = π→*[2*n] (ppoint f) :=
by reflexivity
definition LES_of_homotopy_groups_fun3_2 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 2) =
π→*[2*n] (boundary_map f) ∘* pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n))) :=
by reflexivity
definition LES_of_homotopy_groups_fun3_3 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 3) = π→*[2*n + 1] f ∘* tinverse :=
by reflexivity
definition LES_of_homotopy_groups_fun3_4 :
cc_to_fn (LES_of_homotopy_groups3 f) (n, 4) = π→*[2*n + 1] (ppoint f) ∘* tinverse :=
by reflexivity
definition LES_of_homotopy_groups_fun3_5 : cc_to_fn (LES_of_homotopy_groups3 f) (n, 5) =
(π→*[2*n + 1] (boundary_map f) ∘* tinverse) ∘*
pcast (ap (ptrunc 0) (loop_space_succ_eq_in Y (2*n+1))) :=
by reflexivity
definition group_LES_of_homotopy_groups3_0 :
Π(k : ) (H : k + 3 < succ 5), group (LES_of_homotopy_groups3 f (0, fin.mk (k+3) H))
| 0 H := begin rexact group_homotopy_group 0 Y end
| 1 H := begin rexact group_homotopy_group 0 X end
| 2 H := begin rexact group_homotopy_group 0 (pfiber f) end
| (k+3) H := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition comm_group_LES_of_homotopy_groups3 (n : ) : Π(x : fin (succ 5)),
comm_group (LES_of_homotopy_groups3 f (n + 1, x))
| (fin.mk 0 H) := proof comm_group_homotopy_group (2*n) Y qed
| (fin.mk 1 H) := proof comm_group_homotopy_group (2*n) X qed
| (fin.mk 2 H) := proof comm_group_homotopy_group (2*n) (pfiber f) qed
| (fin.mk 3 H) := proof comm_group_homotopy_group (2*n+1) Y qed
| (fin.mk 4 H) := proof comm_group_homotopy_group (2*n+1) X qed
| (fin.mk 5 H) := proof comm_group_homotopy_group (2*n+1) (pfiber f) qed
| (fin.mk (k+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition CommGroup_LES_of_homotopy_groups3 (n : +6) : CommGroup.{u} :=
CommGroup.mk (LES_of_homotopy_groups3 f (pr1 n + 1, pr2 n))
(comm_group_LES_of_homotopy_groups3 f (pr1 n) (pr2 n))
exit
definition homomorphism_LES_of_homotopy_groups_fun3 : Π(k : +6),
CommGroup_LES_of_homotopy_groups3 f (S k) →g CommGroup_LES_of_homotopy_groups3 f k
| (k, fin.mk 0 H) :=
proof homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 0))
(phomotopy_group_functor_mul _ _) qed
| (k, fin.mk 1 H) :=
proof homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 1))
(phomotopy_group_functor_mul _ _) qed
| (k, fin.mk 2 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 2)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_2],
refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1)] (boundary_map f)) _ _ _,
{ apply group_homotopy_group ((2 * k) + 1)},
{ apply phomotopy_group_functor_mul},
{ rewrite [▸*, -ap_compose', ▸*],
apply is_homomorphism_cast_loop_space_succ_eq_in} end end
end
| (k, fin.mk 3 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 3)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_3],
refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] f) tinverse _ _,
{ apply phomotopy_group_functor_mul},
{ apply is_homomorphism_inverse} end end
end
| (k, fin.mk 4 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 4)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_4],
refine @is_homomorphism_compose _ _ _ _ _ _ (π→*[2 * (k + 1) + 1] (ppoint f)) tinverse _ _,
{ apply phomotopy_group_functor_mul},
{ apply is_homomorphism_inverse} end end
end
| (k, fin.mk 5 H) :=
begin
apply homomorphism.mk (cc_to_fn (LES_of_homotopy_groups3 f) (k + 1, 5)),
exact abstract begin rewrite [LES_of_homotopy_groups_fun3_5],
refine @is_homomorphism_compose _ _ _ _ _ _
(π→*[2 * (k + 1) + 1] (boundary_map f) ∘ tinverse) _ _ _,
{ refine @is_homomorphism_compose _ _ _ _ _ _
(π→*[2 * (k + 1) + 1] (boundary_map f)) tinverse _ _,
{ apply phomotopy_group_functor_mul},
{ apply is_homomorphism_inverse}},
{ rewrite [▸*, -ap_compose', ▸*],
apply is_homomorphism_cast_loop_space_succ_eq_in} end end
end
| (k, fin.mk (l+6) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
--TODO: the maps 3, 4 and 5 are anti-homomorphisms.
end old
end chain_complex