prove is_equiv_π_of_is_connected for functions where the domain and codomain live in different universes
This commit is contained in:
parent
7d7ddaff9f
commit
0af9c0ecc7
2 changed files with 111 additions and 14 deletions
|
@ -5,7 +5,7 @@ Authors: Floris van Doorn
|
|||
-/
|
||||
|
||||
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
|
||||
homotopy.complex_hopf
|
||||
homotopy.complex_hopf types.lift
|
||||
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex fin algebra
|
||||
group trunc_index function join pushout prod sigma sigma.ops
|
||||
|
||||
|
@ -69,7 +69,6 @@ namespace chain_complex
|
|||
| (n, fin.mk 2 H) := loopn_pequiv_loopn n e
|
||||
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
|
||||
|
||||
/- all cases where n>0 are basically the same -/
|
||||
definition fibration_sequence_fun_phomotopy : Π(x : +3ℕ),
|
||||
fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~*
|
||||
(fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x))
|
||||
|
@ -101,13 +100,40 @@ namespace chain_complex
|
|||
end
|
||||
end chain_complex
|
||||
|
||||
namespace lift
|
||||
|
||||
definition pup [constructor] {A : Type*} : A →* plift A :=
|
||||
pmap.mk up idp
|
||||
|
||||
definition pdown [constructor] {A : Type*} : plift A →* A :=
|
||||
pmap.mk down idp
|
||||
|
||||
definition plift_functor_phomotopy [constructor] {A B : Type*} (f : A →* B)
|
||||
: pdown ∘* plift_functor f ∘* pup ~* f :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ reflexivity},
|
||||
{ esimp, refine !idp_con ⬝ _, refine _ ⬝ ap02 down !idp_con⁻¹,
|
||||
refine _ ⬝ !ap_compose, exact !ap_id⁻¹}
|
||||
end
|
||||
|
||||
definition equiv_lift [constructor] (A : Type) : A ≃ lift A :=
|
||||
equiv.MK up down up_down down_up
|
||||
|
||||
definition pequiv_plift [constructor] (A : Type*) : A ≃* plift A :=
|
||||
pequiv_of_equiv (equiv_lift A) idp
|
||||
|
||||
end lift open lift
|
||||
|
||||
namespace is_conn
|
||||
|
||||
local attribute comm_group.to_group [coercion]
|
||||
local attribute is_equiv_tinverse [instance]
|
||||
|
||||
theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ℕ) (f : A →* B)
|
||||
[H : is_conn_fun n f] (H2 : k ≤ n) : is_equiv (π→[k] f) :=
|
||||
-- TODO: generalize this to arbitrary maps using lifts,
|
||||
-- using that up : A → lift A and down : lift A → A are equivalences
|
||||
theorem is_equiv_π_of_is_connected'.{u} {A B : pType.{u}} {n k : ℕ} (f : A →* B)
|
||||
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
|
||||
begin
|
||||
cases k with k,
|
||||
{ /- k = 0 -/
|
||||
|
@ -127,6 +153,84 @@ namespace is_conn
|
|||
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))},
|
||||
end
|
||||
|
||||
-- MOVE
|
||||
-- Remark: ⁻¹ʰ conflicts with the inverse of a homomorphism
|
||||
infix ` ⬝h `:75 := homotopy.trans
|
||||
postfix `⁻¹ʰ`:(max+1) := homotopy.symm
|
||||
|
||||
-- MOVE
|
||||
definition trunc_functor_homotopy [unfold 7] {X Y : Type} (n : ℕ₋₂) {f g : X → Y}
|
||||
(p : f ~ g) (x : trunc n X) : trunc_functor n f x = trunc_functor n g x :=
|
||||
begin
|
||||
induction x with x, esimp, exact ap tr (p x)
|
||||
end
|
||||
|
||||
-- MOVE
|
||||
definition ptrunc_functor_phomotopy [constructor] {X Y : Type*} (n : ℕ₋₂) {f g : X →* Y}
|
||||
(p : f ~* g) : ptrunc_functor n f ~* ptrunc_functor n g :=
|
||||
begin
|
||||
fapply phomotopy.mk,
|
||||
{ exact trunc_functor_homotopy n p},
|
||||
{ esimp, refine !ap_con⁻¹ ⬝ _, exact ap02 tr !to_homotopy_pt},
|
||||
end
|
||||
|
||||
-- MOVE
|
||||
definition phomotopy_group_functor_phomotopy [constructor] (n : ℕ) {A B : Type*} {f g : A →* B}
|
||||
(p : f ~* g) : π→*[n] f ~* π→*[n] g :=
|
||||
ptrunc_functor_phomotopy 0 (apn_phomotopy n p)
|
||||
|
||||
-- MOVE
|
||||
definition phomotopy_group_functor_compose [constructor] (n : ℕ) {A B C : Type*} (g : B →* C)
|
||||
(f : A →* B) : π→*[n] (g ∘* f) ~* π→*[n] g ∘* π→*[n] f :=
|
||||
ptrunc_functor_phomotopy 0 !apn_compose ⬝* !ptrunc_functor_pcompose
|
||||
|
||||
-- MOVE
|
||||
definition is_equiv_homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
|
||||
[is_equiv f] : is_equiv (π→[n] f) :=
|
||||
@(is_equiv_trunc_functor 0 _) !is_equiv_apn
|
||||
|
||||
-- MOVE this to init.equiv, and incorporate it in `is_equiv_ap`
|
||||
theorem eq_of_fn_eq_fn'_ap {A B : Type} (f : A → B) [is_equiv f] {x y : A} (q : x = y)
|
||||
: eq_of_fn_eq_fn' f (ap f q) = q :=
|
||||
by induction q; apply con.left_inv
|
||||
|
||||
-- MOVE
|
||||
definition fiber_lift_functor {A B : Type} (f : A → B) (b : B) :
|
||||
fiber (lift_functor f) (up b) ≃ fiber f b :=
|
||||
begin
|
||||
fapply equiv.MK: intro v; cases v with a p,
|
||||
{ cases a with a, exact fiber.mk a (eq_of_fn_eq_fn' up p)},
|
||||
{ exact fiber.mk (up a) (ap up p)},
|
||||
{ esimp, apply ap (fiber.mk a), apply eq_of_fn_eq_fn'_ap},
|
||||
{ cases a with a, esimp, apply ap (fiber.mk (up a)), apply ap_eq_of_fn_eq_fn'}
|
||||
end
|
||||
|
||||
-- MOVE
|
||||
definition is_conn_fun_lift_functor (n : ℕ₋₂) {A B : Type} (f : A → B) [is_conn_fun n f] :
|
||||
is_conn_fun n (lift_functor f) :=
|
||||
begin
|
||||
intro b, cases b with b, apply is_trunc_equiv_closed_rev,
|
||||
{ apply trunc_equiv_trunc, apply fiber_lift_functor}
|
||||
end
|
||||
|
||||
theorem is_equiv_π_of_is_connected.{u v} {A : pType.{u}} {B : pType.{v}} {n k : ℕ} (f : A →* B)
|
||||
(H2 : k ≤ n) [H : is_conn_fun n f] : is_equiv (π→[k] f) :=
|
||||
begin
|
||||
have π→*[k] pdown.{v u} ∘* π→*[k] (plift_functor f) ∘* π→*[k] pup.{u v} ~* π→*[k] f,
|
||||
begin
|
||||
refine pwhisker_left _ !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
refine !phomotopy_group_functor_compose⁻¹* ⬝* _,
|
||||
apply phomotopy_group_functor_phomotopy, apply plift_functor_phomotopy
|
||||
end,
|
||||
have π→[k] pdown.{v u} ∘ π→[k] (plift_functor f) ∘ π→[k] pup.{u v} ~ π→[k] f, from this,
|
||||
apply is_equiv.homotopy_closed, rotate 1,
|
||||
{ exact this},
|
||||
{ do 2 apply is_equiv_compose,
|
||||
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift},
|
||||
{ refine @(is_equiv_π_of_is_connected' _ H2) _, apply is_conn_fun_lift_functor},
|
||||
{ apply is_equiv_homotopy_group_functor, apply to_is_equiv !equiv_lift⁻¹ᵉ}}
|
||||
end
|
||||
|
||||
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ℕ) (f : A →* B)
|
||||
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
|
||||
@is_surjective_of_trivial _
|
||||
|
@ -143,10 +247,10 @@ namespace is_conn
|
|||
end is_conn
|
||||
|
||||
namespace sigma
|
||||
definition ppr1 {A : Type*} {B : A → Type*} : (Σ*(x : A), B x) →* A :=
|
||||
definition ppr1 [constructor] {A : Type*} {B : A → Type*} : (Σ*(x : A), B x) →* A :=
|
||||
pmap.mk pr1 idp
|
||||
|
||||
definition ppr2 {A : Type*} (B : A → Type*) (v : (Σ*(x : A), B x)) : B (ppr1 v) :=
|
||||
definition ppr2 [unfold_full] {A : Type*} (B : A → Type*) (v : (Σ*(x : A), B x)) : B (ppr1 v) :=
|
||||
pr2 v
|
||||
end sigma
|
||||
|
||||
|
@ -155,13 +259,6 @@ namespace hopf
|
|||
open sphere.ops susp circle sphere_index
|
||||
|
||||
attribute hopf [unfold 4]
|
||||
-- definition phopf (x : psusp A) : Type* :=
|
||||
-- pointed.MK (hopf A x)
|
||||
-- begin
|
||||
-- induction x with a: esimp,
|
||||
-- do 2 exact 1,
|
||||
-- apply pathover_of_tr_eq, rewrite [↑hopf, elim_type_merid, ▸*, mul_one],
|
||||
-- end
|
||||
|
||||
-- maybe define this as a composition of pointed maps?
|
||||
definition complex_phopf [constructor] : S. 3 →* S. 2 :=
|
||||
|
|
|
@ -547,7 +547,7 @@ namespace chain_complex namespace old
|
|||
definition is_exact_type_LES_of_homotopy_groups2 : is_exact_t (type_LES_of_homotopy_groups2) :=
|
||||
begin
|
||||
intro n,
|
||||
apply is_exact_at_transfer2,
|
||||
apply is_exact_at_t_transfer2,
|
||||
apply is_exact_type_LES_of_homotopy_groups
|
||||
end
|
||||
|
||||
|
|
Loading…
Reference in a new issue