give the LES of a fibration sequence

This commit is contained in:
Floris van Doorn 2016-04-13 12:20:22 -04:00
parent 2de92db5b6
commit 7d7ddaff9f
3 changed files with 73 additions and 3 deletions

View file

@ -31,6 +31,76 @@ namespace nat
end nat
open nat
namespace pointed
definition apn_phomotopy {A B : Type*} {f g : A →* B} (n : ) (p : f ~* g)
: apn n f ~* apn n g :=
begin
induction n with n IH,
{ exact p},
{ exact ap1_phomotopy IH}
end
end pointed open pointed
namespace chain_complex
section
universe variable u
parameters {F X Y : pType.{u}} (f : X →* Y) (g : F →* X) (e : pfiber f ≃* F)
(p : ppoint f ~* g ∘* e)
include f p
open succ_str
definition fibration_sequence_car [reducible] : +3 → Type*
| (n, fin.mk 0 H) := Ω[n] Y
| (n, fin.mk 1 H) := Ω[n] X
| (n, fin.mk k H) := Ω[n] F
definition fibration_sequence_fun
: Π(n : +3), fibration_sequence_car (S n) →* fibration_sequence_car n
| (n, fin.mk 0 H) := proof Ω→[n] f qed
| (n, fin.mk 1 H) := proof Ω→[n] g qed
| (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* pcast (loop_space_succ_eq_in Y n) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition fibration_sequence_pequiv : Π(x : +3),
loop_spaces2 f x ≃* fibration_sequence_car x
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := loopn_pequiv_loopn n e
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
/- all cases where n>0 are basically the same -/
definition fibration_sequence_fun_phomotopy : Π(x : +3),
fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~*
(fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x))
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) :=
begin refine !pid_comp ⬝* _, refine apn_phomotopy n p ⬝* _,
refine !apn_compose ⬝* _, reflexivity end
| (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !comp_pid⁻¹*, apply pwhisker_right,
refine _ ⬝* !apn_compose⁻¹*, reflexivity end
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition type_fibration_sequence [constructor] : type_chain_complex +3 :=
transfer_type_chain_complex
(LES_of_loop_spaces2 f)
fibration_sequence_fun
fibration_sequence_pequiv
fibration_sequence_fun_phomotopy
definition is_exact_type_fibration_sequence : is_exact_t type_fibration_sequence :=
begin
intro n,
apply is_exact_at_t_transfer,
apply is_exact_LES_of_loop_spaces2
end
definition fibration_sequence [constructor] : chain_complex +3 :=
trunc_chain_complex type_fibration_sequence
end
end chain_complex
namespace is_conn
local attribute comm_group.to_group [coercion]

View file

@ -521,7 +521,7 @@ namespace chain_complex
| (n, fin.mk 1 H) := Ω[n] X
| (n, fin.mk k H) := Ω[n] (pfiber f)
definition loop_spaces2_add1 (n : ) : Π(x : fin (nat.succ 2)),
definition loop_spaces2_add1 (n : ) : Π(x : fin 3),
loop_spaces2 (n+1, x) = Ω (loop_spaces2 (n, x))
| (fin.mk 0 H) := by reflexivity
| (fin.mk 1 H) := by reflexivity
@ -670,7 +670,7 @@ namespace chain_complex
definition is_exact_LES_of_loop_spaces2 : is_exact_t LES_of_loop_spaces2 :=
begin
intro n,
apply is_exact_at_transfer2,
apply is_exact_at_t_transfer2,
apply is_exact_LES_of_loop_spaces
end

View file

@ -211,7 +211,7 @@ namespace chain_complex
apply respect_pt
end
definition is_exact_at_transfer2 {X : type_chain_complex N} {M : succ_str} {Y : M → Type*}
definition is_exact_at_t_transfer2 {X : type_chain_complex N} {M : succ_str} {Y : M → Type*}
(f : M ≃ N) (c : Π(m : M), S (f m) = f (S m))
(g : Π{m : M}, Y (S m) →* Y m) (e : Π{m}, X (f m) ≃* Y m)
(p : Π{m} (x : X (S (f m))), e (tcc_to_fn X (f m) x) = g (e (cast (ap (λx, X x) (c m)) x)))