Spectral/homotopy/LES_applications.hlean
2016-04-13 12:20:22 -04:00

268 lines
9.8 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
homotopy.complex_hopf
open eq is_trunc pointed is_conn is_equiv fiber equiv trunc nat chain_complex fin algebra
group trunc_index function join pushout prod sigma sigma.ops
namespace nat
open sigma sum
definition eq_even_or_eq_odd (n : ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
begin
induction n with n IH,
{ exact inl ⟨0, idp⟩},
{ induction IH with H H: induction H with k p: induction p,
{ exact inr ⟨k, idp⟩},
{ refine inl ⟨k+1, idp⟩}}
end
definition rec_on_even_odd {P : → Type} (n : ) (H : Πk, P (2 * k)) (H2 : Πk, P (2 * k + 1))
: P n :=
begin
cases eq_even_or_eq_odd n with v v: induction v with k p: induction p,
{ exact H k},
{ exact H2 k}
end
end nat
open nat
namespace pointed
definition apn_phomotopy {A B : Type*} {f g : A →* B} (n : ) (p : f ~* g)
: apn n f ~* apn n g :=
begin
induction n with n IH,
{ exact p},
{ exact ap1_phomotopy IH}
end
end pointed open pointed
namespace chain_complex
section
universe variable u
parameters {F X Y : pType.{u}} (f : X →* Y) (g : F →* X) (e : pfiber f ≃* F)
(p : ppoint f ~* g ∘* e)
include f p
open succ_str
definition fibration_sequence_car [reducible] : +3 → Type*
| (n, fin.mk 0 H) := Ω[n] Y
| (n, fin.mk 1 H) := Ω[n] X
| (n, fin.mk k H) := Ω[n] F
definition fibration_sequence_fun
: Π(n : +3), fibration_sequence_car (S n) →* fibration_sequence_car n
| (n, fin.mk 0 H) := proof Ω→[n] f qed
| (n, fin.mk 1 H) := proof Ω→[n] g qed
| (n, fin.mk 2 H) := proof Ω→[n] (e ∘* boundary_map f) ∘* pcast (loop_space_succ_eq_in Y n) qed
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition fibration_sequence_pequiv : Π(x : +3),
loop_spaces2 f x ≃* fibration_sequence_car x
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) := by reflexivity
| (n, fin.mk 2 H) := loopn_pequiv_loopn n e
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
/- all cases where n>0 are basically the same -/
definition fibration_sequence_fun_phomotopy : Π(x : +3),
fibration_sequence_pequiv x ∘* loop_spaces_fun2 f x ~*
(fibration_sequence_fun x ∘* fibration_sequence_pequiv (S x))
| (n, fin.mk 0 H) := by reflexivity
| (n, fin.mk 1 H) :=
begin refine !pid_comp ⬝* _, refine apn_phomotopy n p ⬝* _,
refine !apn_compose ⬝* _, reflexivity end
| (n, fin.mk 2 H) := begin refine !passoc⁻¹* ⬝* _ ⬝* !comp_pid⁻¹*, apply pwhisker_right,
refine _ ⬝* !apn_compose⁻¹*, reflexivity end
| (n, fin.mk (k+3) H) := begin exfalso, apply lt_le_antisymm H, apply le_add_left end
definition type_fibration_sequence [constructor] : type_chain_complex +3 :=
transfer_type_chain_complex
(LES_of_loop_spaces2 f)
fibration_sequence_fun
fibration_sequence_pequiv
fibration_sequence_fun_phomotopy
definition is_exact_type_fibration_sequence : is_exact_t type_fibration_sequence :=
begin
intro n,
apply is_exact_at_t_transfer,
apply is_exact_LES_of_loop_spaces2
end
definition fibration_sequence [constructor] : chain_complex +3 :=
trunc_chain_complex type_fibration_sequence
end
end chain_complex
namespace is_conn
local attribute comm_group.to_group [coercion]
local attribute is_equiv_tinverse [instance]
theorem is_equiv_π_of_is_connected.{u} {A B : pType.{u}} (n k : ) (f : A →* B)
[H : is_conn_fun n f] (H2 : k ≤ n) : is_equiv (π→[k] f) :=
begin
cases k with k,
{ /- k = 0 -/
change (is_equiv (trunc_functor 0 f)), apply is_equiv_trunc_functor_of_is_conn_fun,
refine is_conn_fun_of_le f (zero_le_of_nat n)},
{ /- k > 0 -/
have H2' : k ≤ n, from le.trans !self_le_succ H2,
exact
@is_equiv_of_trivial _
(LES_of_homotopy_groups f) _
(is_exact_LES_of_homotopy_groups f (k, 2))
(is_exact_LES_of_homotopy_groups f (succ k, 0))
(@is_contr_HG_fiber_of_is_connected A B k n f H H2')
(@is_contr_HG_fiber_of_is_connected A B (succ k) n f H H2)
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 0) idp)
(@pgroup_of_group _ (group_LES_of_homotopy_groups f k 1) idp)
(homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun f (k, 0)))},
end
theorem is_surjective_π_of_is_connected.{u} {A B : pType.{u}} (n : ) (f : A →* B)
[H : is_conn_fun n f] : is_surjective (π→[n + 1] f) :=
@is_surjective_of_trivial _
(LES_of_homotopy_groups f) _
(is_exact_LES_of_homotopy_groups f (n, 2))
(@is_contr_HG_fiber_of_is_connected A B n n f H !le.refl)
-- TODO: move and rename?
definition natural_square2 {A B X : Type} {f : A → X} {g : B → X} (h : Πa b, f a = g b)
{a a' : A} {b b' : B} (p : a = a') (q : b = b')
: square (ap f p) (ap g q) (h a b) (h a' b') :=
by induction p; induction q; exact hrfl
end is_conn
namespace sigma
definition ppr1 {A : Type*} {B : A → Type*} : (Σ*(x : A), B x) →* A :=
pmap.mk pr1 idp
definition ppr2 {A : Type*} (B : A → Type*) (v : (Σ*(x : A), B x)) : B (ppr1 v) :=
pr2 v
end sigma
namespace hopf
open sphere.ops susp circle sphere_index
attribute hopf [unfold 4]
-- definition phopf (x : psusp A) : Type* :=
-- pointed.MK (hopf A x)
-- begin
-- induction x with a: esimp,
-- do 2 exact 1,
-- apply pathover_of_tr_eq, rewrite [↑hopf, elim_type_merid, ▸*, mul_one],
-- end
-- maybe define this as a composition of pointed maps?
definition complex_phopf [constructor] : S. 3 →* S. 2 :=
proof pmap.mk complex_hopf idp qed
definition fiber_pr1_fun {A : Type} {B : A → Type} {a : A} (b : B a)
: fiber_pr1 B a (fiber.mk ⟨a, b⟩ idp) = b :=
idp
--TODO: in fiber.equiv_precompose, make f explicit
open sphere sphere.ops
definition add_plus_one_of_nat (n m : ) : (n +1+ m) = sphere_index.of_nat (n + m + 1) :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH}
end
-- definition pjoin_pspheres (n m : ) : join (S. n) (S. m) ≃ (S. (n + m + 1)) :=
-- join.spheres n m ⬝e begin esimp, apply equiv_of_eq, apply ap S, apply add_plus_one_of_nat end
definition part_of_complex_hopf : S (of_nat 3) → sigma (hopf S¹) :=
begin
intro x, apply inv (hopf.total S¹), apply inv (join.spheres 1 1), exact x
end
definition part_of_complex_hopf_base2
: (part_of_complex_hopf (@sphere.base 3)).2 = circle.base :=
begin
exact sorry
end
definition pfiber_complex_phopf : pfiber complex_phopf ≃* S. 1 :=
begin
fapply pequiv_of_equiv,
{ esimp, unfold [complex_hopf],
refine @fiber.equiv_precompose _ _ (sigma.pr1 ∘ (hopf.total S¹)⁻¹ᵉ) _ _
(join.spheres 1 1)⁻¹ᵉ _ ⬝e _,
refine fiber.equiv_precompose (hopf.total S¹)⁻¹ᵉ ⬝e _,
apply fiber_pr1},
{ esimp, refine _ ⬝ part_of_complex_hopf_base2, apply fiber_pr1_fun}
end
open int
definition one_le_succ (n : ) : 1 ≤ succ n :=
nat.succ_le_succ !zero_le
definition π2S2 : πg[1+1] (S. 2) = g :=
begin
refine _ ⬝ fundamental_group_of_circle,
refine _ ⬝ ap (λx, π₁ x) (eq_of_pequiv pfiber_complex_phopf),
fapply Group_eq,
{ fapply equiv.mk,
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (1, 2)},
{ refine @is_equiv_of_trivial _
_ _
(is_exact_LES_of_homotopy_groups _ (1, 1))
(is_exact_LES_of_homotopy_groups _ (1, 2))
_
_
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
_,
{ rewrite [LES_of_homotopy_groups_1, ▸*],
have H : 1 ≤[] 2, from !one_le_succ,
apply trivial_homotopy_group_of_is_conn, exact H, rexact is_conn_psphere 3},
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
(LES_of_homotopy_groups_1 complex_phopf 2) _,
apply trivial_homotopy_group_of_is_conn, apply le.refl, rexact is_conn_psphere 3},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}}},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (0, 2))}
end
open circle
definition πnS3_eq_πnS2 (n : ) : πg[n+2 +1] (S. 3) = πg[n+2 +1] (S. 2) :=
begin
fapply Group_eq,
{ fapply equiv.mk,
{ exact cc_to_fn (LES_of_homotopy_groups complex_phopf) (n+3, 0)},
{ have H : is_trunc 1 (pfiber complex_phopf),
from @(is_trunc_equiv_closed_rev _ pfiber_complex_phopf) is_trunc_circle,
refine @is_equiv_of_trivial _
_ _
(is_exact_LES_of_homotopy_groups _ (n+2, 2))
(is_exact_LES_of_homotopy_groups _ (n+3, 0))
_
_
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
(@pgroup_of_group _ (group_LES_of_homotopy_groups complex_phopf _ _) idp)
_,
{ rewrite [▸*, LES_of_homotopy_groups_2 _ (n +[] 2)],
have H : 1 ≤[] n + 1, from !one_le_succ,
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
{ refine tr_rev (λx, is_contr (ptrunctype._trans_of_to_pType x))
(LES_of_homotopy_groups_2 complex_phopf _) _,
have H : 1 ≤[] n + 2, from !one_le_succ,
apply trivial_homotopy_group_of_is_trunc _ _ _ H},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}}},
{ exact homomorphism.struct (homomorphism_LES_of_homotopy_groups_fun _ (n+2, 0))}
end
end hopf