Spectral/algebra/direct_sum.hlean

34 lines
1.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group .product_group .free_group .free_commutative_group
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
equiv
namespace group
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
{A B : CommGroup}
variables (X : Set) {l l' : list (X ⊎ X)}
section
parameters {I : Set} (Y : I → CommGroup)
definition dirsum_carrier : CommGroup := free_comm_group (trunctype.mk (Σi, Y i) _)
local abbreviation ι := @free_comm_group_inclusion
inductive dirsum_rel : dirsum_carrier → Type :=
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
definition direct_sum : CommGroup := quotient_comm_group_gen dirsum_carrier (λg, ∥dirsum_rel g∥)
end
end group