238 lines
8.3 KiB
Text
238 lines
8.3 KiB
Text
|
/-
|
||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
Authors: Floris van Doorn, Egbert Rijke
|
||
|
|
||
|
Constructions with groups
|
||
|
-/
|
||
|
|
||
|
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup
|
||
|
|
||
|
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
||
|
equiv
|
||
|
namespace group
|
||
|
|
||
|
variables {G G' : Group} (H : subgroup_rel G) (N : normal_subgroup_rel G) {g g' h h' k : G}
|
||
|
{A B : CommGroup}
|
||
|
|
||
|
/- Quotient Group -/
|
||
|
|
||
|
definition quotient_rel (g h : G) : Prop := N (g * h⁻¹)
|
||
|
|
||
|
variable {N}
|
||
|
|
||
|
-- We prove that quotient_rel is an equivalence relation
|
||
|
theorem quotient_rel_refl (g : G) : quotient_rel N g g :=
|
||
|
transport (λx, N x) !mul.right_inv⁻¹ (subgroup_has_one N)
|
||
|
|
||
|
theorem quotient_rel_symm (r : quotient_rel N g h) : quotient_rel N h g :=
|
||
|
transport (λx, N x) (!mul_inv ⬝ ap (λx, x * _) !inv_inv) (subgroup_respect_inv N r)
|
||
|
|
||
|
theorem quotient_rel_trans (r : quotient_rel N g h) (s : quotient_rel N h k)
|
||
|
: quotient_rel N g k :=
|
||
|
have H1 : N ((g * h⁻¹) * (h * k⁻¹)), from subgroup_respect_mul N r s,
|
||
|
have H2 : (g * h⁻¹) * (h * k⁻¹) = g * k⁻¹, from calc
|
||
|
(g * h⁻¹) * (h * k⁻¹) = ((g * h⁻¹) * h) * k⁻¹ : by rewrite [mul.assoc (g * h⁻¹)]
|
||
|
... = g * k⁻¹ : by rewrite inv_mul_cancel_right,
|
||
|
show N (g * k⁻¹), from H2 ▸ H1
|
||
|
|
||
|
theorem is_equivalence_quotient_rel : is_equivalence (quotient_rel N) :=
|
||
|
is_equivalence.mk quotient_rel_refl
|
||
|
(λg h, quotient_rel_symm)
|
||
|
(λg h k, quotient_rel_trans)
|
||
|
|
||
|
-- We prove that quotient_rel respects inverses and multiplication, so
|
||
|
-- it is a congruence relation
|
||
|
theorem quotient_rel_resp_inv (r : quotient_rel N g h) : quotient_rel N g⁻¹ h⁻¹ :=
|
||
|
have H1 : N (g⁻¹ * (h * g⁻¹) * g), from
|
||
|
is_normal_subgroup' N g (quotient_rel_symm r),
|
||
|
have H2 : g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h⁻¹⁻¹, from calc
|
||
|
g⁻¹ * (h * g⁻¹) * g = g⁻¹ * h * g⁻¹ * g : by rewrite -mul.assoc
|
||
|
... = g⁻¹ * h : inv_mul_cancel_right
|
||
|
... = g⁻¹ * h⁻¹⁻¹ : by rewrite algebra.inv_inv,
|
||
|
show N (g⁻¹ * h⁻¹⁻¹), from H2 ▸ H1
|
||
|
|
||
|
theorem quotient_rel_resp_mul (r : quotient_rel N g h) (r' : quotient_rel N g' h')
|
||
|
: quotient_rel N (g * g') (h * h') :=
|
||
|
have H1 : N (g * ((g' * h'⁻¹) * h⁻¹)), from
|
||
|
normal_subgroup_insert N r' r,
|
||
|
have H2 : g * ((g' * h'⁻¹) * h⁻¹) = (g * g') * (h * h')⁻¹, from calc
|
||
|
g * ((g' * h'⁻¹) * h⁻¹) = g * (g' * (h'⁻¹ * h⁻¹)) : by rewrite [mul.assoc]
|
||
|
... = (g * g') * (h'⁻¹ * h⁻¹) : mul.assoc
|
||
|
... = (g * g') * (h * h')⁻¹ : by rewrite [mul_inv],
|
||
|
show N ((g * g') * (h * h')⁻¹), from transport (λx, N x) H2 H1
|
||
|
|
||
|
local attribute is_equivalence_quotient_rel [instance]
|
||
|
|
||
|
variable (N)
|
||
|
|
||
|
definition qg : Type := set_quotient (quotient_rel N)
|
||
|
|
||
|
variable {N}
|
||
|
|
||
|
local attribute qg [reducible]
|
||
|
|
||
|
definition quotient_one [constructor] : qg N := class_of one
|
||
|
definition quotient_inv [unfold 3] : qg N → qg N :=
|
||
|
quotient_unary_map has_inv.inv (λg g' r, quotient_rel_resp_inv r)
|
||
|
definition quotient_mul [unfold 3 4] : qg N → qg N → qg N :=
|
||
|
quotient_binary_map has_mul.mul (λg g' r h h' r', quotient_rel_resp_mul r r')
|
||
|
|
||
|
section
|
||
|
local notation 1 := quotient_one
|
||
|
local postfix ⁻¹ := quotient_inv
|
||
|
local infix * := quotient_mul
|
||
|
|
||
|
theorem quotient_mul_assoc (g₁ g₂ g₃ : qg N) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
|
||
|
begin
|
||
|
refine set_quotient.rec_prop _ g₁,
|
||
|
refine set_quotient.rec_prop _ g₂,
|
||
|
refine set_quotient.rec_prop _ g₃,
|
||
|
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
|
||
|
exact ap class_of !mul.assoc
|
||
|
end
|
||
|
|
||
|
theorem quotient_one_mul (g : qg N) : 1 * g = g :=
|
||
|
begin
|
||
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
|
exact ap class_of !one_mul
|
||
|
end
|
||
|
|
||
|
theorem quotient_mul_one (g : qg N) : g * 1 = g :=
|
||
|
begin
|
||
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
|
exact ap class_of !mul_one
|
||
|
end
|
||
|
|
||
|
theorem quotient_mul_left_inv (g : qg N) : g⁻¹ * g = 1 :=
|
||
|
begin
|
||
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
|
exact ap class_of !mul.left_inv
|
||
|
end
|
||
|
|
||
|
theorem quotient_mul_comm {G : CommGroup} {N : normal_subgroup_rel G} (g h : qg N)
|
||
|
: g * h = h * g :=
|
||
|
begin
|
||
|
refine set_quotient.rec_prop _ g, clear g, intro g,
|
||
|
refine set_quotient.rec_prop _ h, clear h, intro h,
|
||
|
apply ap class_of, esimp, apply mul.comm
|
||
|
end
|
||
|
|
||
|
end
|
||
|
|
||
|
variable (N)
|
||
|
definition group_qg [constructor] : group (qg N) :=
|
||
|
group.mk quotient_mul _ quotient_mul_assoc quotient_one quotient_one_mul quotient_mul_one
|
||
|
quotient_inv quotient_mul_left_inv
|
||
|
|
||
|
definition quotient_group [constructor] : Group :=
|
||
|
Group.mk _ (group_qg N)
|
||
|
|
||
|
definition comm_group_qg [constructor] {G : CommGroup} (N : normal_subgroup_rel G)
|
||
|
: comm_group (qg N) :=
|
||
|
⦃comm_group, group_qg N, mul_comm := quotient_mul_comm⦄
|
||
|
|
||
|
definition quotient_comm_group [constructor] {G : CommGroup} (N : subgroup_rel G)
|
||
|
: CommGroup :=
|
||
|
CommGroup.mk _ (comm_group_qg (normal_subgroup_rel_comm N))
|
||
|
|
||
|
definition gq_map : G →g quotient_group N :=
|
||
|
homomorphism.mk class_of (λ g h, idp)
|
||
|
|
||
|
namespace quotient
|
||
|
notation `⟦`:max a `⟧`:0 := gq_map a _
|
||
|
end quotient
|
||
|
|
||
|
open quotient
|
||
|
variable {N}
|
||
|
|
||
|
definition gq_map_eq_one (g : G) (H : N g) : gq_map N g = 1 :=
|
||
|
begin
|
||
|
apply eq_of_rel,
|
||
|
have e : (g * 1⁻¹ = g),
|
||
|
from calc
|
||
|
g * 1⁻¹ = g * 1 : one_inv
|
||
|
... = g : mul_one,
|
||
|
unfold quotient_rel, rewrite e, exact H
|
||
|
end
|
||
|
|
||
|
definition rel_of_gq_map_eq_one (g : G) (H : gq_map N g = 1) : N g :=
|
||
|
begin
|
||
|
have e : (g * 1⁻¹ = g),
|
||
|
from calc
|
||
|
g * 1⁻¹ = g * 1 : one_inv
|
||
|
... = g : mul_one,
|
||
|
rewrite (inverse e),
|
||
|
apply rel_of_eq _ H
|
||
|
end
|
||
|
|
||
|
definition quotient_group_elim (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group N →g G' :=
|
||
|
begin
|
||
|
fapply homomorphism.mk,
|
||
|
-- define function
|
||
|
{ apply set_quotient.elim f,
|
||
|
intro g h K,
|
||
|
apply eq_of_mul_inv_eq_one,
|
||
|
have e : f (g * h⁻¹) = f g * (f h)⁻¹,
|
||
|
from calc
|
||
|
f (g * h⁻¹) = f g * (f h⁻¹) : to_respect_mul
|
||
|
... = f g * (f h)⁻¹ : to_respect_inv,
|
||
|
rewrite (inverse e),
|
||
|
apply H, exact K},
|
||
|
{ intro g h, induction g using set_quotient.rec_prop with g,
|
||
|
induction h using set_quotient.rec_prop with h,
|
||
|
krewrite (inverse (to_respect_mul (gq_map N) g h)),
|
||
|
unfold gq_map, esimp, exact to_respect_mul f g h }
|
||
|
end
|
||
|
|
||
|
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) : quotient_group_elim f H ∘g gq_map N ~ f :=
|
||
|
begin
|
||
|
intro g, reflexivity
|
||
|
end
|
||
|
|
||
|
definition glift_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
|
||
|
: ( k ∘g gq_map N ~ f ) → k ~ quotient_group_elim f H :=
|
||
|
begin
|
||
|
intro K cg, induction cg using set_quotient.rec_prop with g,
|
||
|
krewrite (quotient_group_compute f),
|
||
|
exact K g
|
||
|
end
|
||
|
|
||
|
definition gq_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
||
|
is_contr (Σ(g : quotient_group N →g G'), g ∘g gq_map N = f) :=
|
||
|
sorry
|
||
|
|
||
|
/- set generating normal subgroup -/
|
||
|
|
||
|
section
|
||
|
|
||
|
parameters {GG : CommGroup} (S : GG → Prop)
|
||
|
|
||
|
inductive generating_relation' : GG → Type :=
|
||
|
| rincl : Π{g}, S g → generating_relation' g
|
||
|
| rmul : Π{g h}, generating_relation' g → generating_relation' h → generating_relation' (g * h)
|
||
|
| rinv : Π{g}, generating_relation' g → generating_relation' g⁻¹
|
||
|
| rone : generating_relation' 1
|
||
|
open generating_relation'
|
||
|
definition generating_relation (g : GG) : Prop := ∥ generating_relation' g ∥
|
||
|
local abbreviation R := generating_relation
|
||
|
definition gr_one : R 1 := tr (rone S)
|
||
|
definition gr_inv (g : GG) : R g → R g⁻¹ :=
|
||
|
trunc_functor -1 rinv
|
||
|
definition gr_mul (g h : GG) : R g → R h → R (g * h) :=
|
||
|
trunc_functor2 rmul
|
||
|
|
||
|
definition normal_generating_relation : subgroup_rel GG :=
|
||
|
⦃ subgroup_rel,
|
||
|
R := generating_relation,
|
||
|
Rone := gr_one,
|
||
|
Rinv := gr_inv,
|
||
|
Rmul := gr_mul⦄
|
||
|
|
||
|
parameter (GG)
|
||
|
definition quotient_comm_group_gen : CommGroup := quotient_comm_group normal_generating_relation
|
||
|
|
||
|
end
|
||
|
|
||
|
end group
|