Spectral/homology/torus.hlean

41 lines
2.2 KiB
Text
Raw Normal View History

2017-06-09 21:48:00 +00:00
/-
Copyright (c) 2017 Kuen-Bang Hou (Favonia).
Released under Apache 2.0 license as described in the file LICENSE.
Author: Kuen-Bang Hou (Favonia)
-/
import .basic .sphere ..homotopy.susp_product
2017-06-09 21:48:00 +00:00
open eq pointed group algebra circle sphere nat equiv susp
function sphere homology int lift prod smash
namespace homology
section
parameter (theory : ordinary_homology_theory)
open ordinary_homology_theory
theorem Hptorus : Π(n : )(m : ), HH theory n (plift (sphere m ×* sphere m)) ≃g
HH theory n (plift (sphere m)) ×g (HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m)))) := λ n m,
calc HH theory n (plift (sphere m ×* sphere m))
≃g HH theory (n + 1) (plift (⅀ (sphere m ×* sphere m))) : by exact (Hplift_susp theory n (sphere m ×* sphere m))⁻¹ᵍ
... ≃g HH theory (n + 1) (plift (⅀ (sphere m) (⅀ (sphere m) ⅀ (sphere m ∧ sphere m))))
: by exact Hplift_isomorphism theory (n + 1) (susp_product (sphere m) (sphere m))
... ≃g HH theory (n + 1) (plift (⅀ (sphere m))) ×g HH theory (n + 1) (plift (⅀ (sphere m) (⅀ (sphere m ∧ sphere m))))
: by exact Hplift_wedge theory (n + 1) (⅀ (sphere m)) (⅀ (sphere m) (⅀ (sphere m ∧ sphere m)))
... ≃g HH theory n (plift (sphere m)) ×g (HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m))))
: by exact product_isomorphism (Hplift_susp theory n (sphere m))
2017-06-09 21:48:00 +00:00
(calc
HH theory (n + 1) (plift (⅀ (sphere m) (⅀ (sphere m ∧ sphere m))))
≃g HH theory (n + 1) (plift (⅀ (sphere m))) ×g HH theory (n + 1) (plift (⅀ (sphere m ∧ sphere m)))
: by exact Hplift_wedge theory (n + 1) (⅀ (sphere m)) (⅀ (sphere m ∧ sphere m))
... ≃g HH theory n (plift (sphere m)) ×g HH theory n (plift (sphere (m + m)))
: by exact product_isomorphism (Hplift_susp theory n (sphere m))
(Hplift_susp theory n (sphere m ∧ sphere m) ⬝g Hplift_isomorphism theory n (sphere_smash_sphere m m)))
2017-06-09 21:48:00 +00:00
end
end homology