Spectral/homotopy/cohomology.hlean

46 lines
1.6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Reduced cohomology
-/
import algebra.arrow_group .spectrum homotopy.EM
open eq spectrum int trunc pointed EM group algebra circle sphere nat EM.ops
definition EM_spectrum /-[constructor]-/ (G : AbGroup) : spectrum :=
spectrum.Mk (K G) (λn, (loop_EM G n)⁻¹ᵉ*)
definition cohomology (X : Type*) (Y : spectrum) (n : ) : AbGroup :=
AbGroup_pmap X (πag[2] (Y (2+n)))
definition ordinary_cohomology [reducible] (X : Type*) (G : AbGroup) (n : ) : AbGroup :=
cohomology X (EM_spectrum G) n
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ) : AbGroup :=
ordinary_cohomology X ag n
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
-- check H^3[S¹*,EM_spectrum ag]
-- check H^3[S¹*]
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ) : AbGroup :=
cohomology X₊ Y n
definition cohomology_homomorphism [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
(n : ) : cohomology X Y n →g cohomology X' Y n :=
Group_pmap_homomorphism f (πag[2] (Y (2+n)))
definition cohomology_homomorphism_id (X : Type*) (Y : spectrum) (n : ) (f : H^n[X, Y]) :
cohomology_homomorphism (pid X) Y n f ~* f :=
!pcompose_pid
definition cohomology_homomorphism_compose {X X' X'' : Type*} (g : X'' →* X') (f : X' →* X)
(Y : spectrum) (n : ) (h : H^n[X, Y]) : cohomology_homomorphism (f ∘* g) Y n h ~*
cohomology_homomorphism g Y n (cohomology_homomorphism f Y n h) :=
!passoc⁻¹*