Spectral/homotopy/wedge.hlean

73 lines
2.2 KiB
Text
Raw Normal View History

-- Authors: Floris van Doorn
import homotopy.wedge
2017-06-08 20:11:02 +00:00
open wedge pushout eq prod sum pointed equiv is_equiv unit lift
namespace wedge
definition wedge_flip' [unfold 3] {A B : Type*} (x : A B) : B A :=
begin
induction x,
{ exact inr a },
{ exact inl a },
{ exact (glue ⋆)⁻¹ }
end
-- TODO: fix precedences
definition wedge_flip [constructor] (A B : Type*) : A B →* B A :=
pmap.mk wedge_flip' (glue ⋆)⁻¹
definition wedge_flip'_wedge_flip' [unfold 3] {A B : Type*} (x : A B) : wedge_flip' (wedge_flip' x) = x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
2017-07-07 21:38:06 +00:00
{ apply eq_pathover_id_right,
apply hdeg_square,
exact ap_compose wedge_flip' _ _ ⬝ ap02 _ !elim_glue ⬝ !ap_inv ⬝ !elim_glue⁻² ⬝ !inv_inv }
end
definition wedge_flip_wedge_flip (A B : Type*) :
wedge_flip B A ∘* wedge_flip A B ~* pid (A B) :=
phomotopy.mk wedge_flip'_wedge_flip'
proof (whisker_right _ (!ap_inv ⬝ !wedge.elim_glue⁻²) ⬝ !con.left_inv)⁻¹ qed
definition wedge_comm [constructor] (A B : Type*) : A B ≃* B A :=
begin
fapply pequiv.MK,
{ exact wedge_flip A B },
{ exact wedge_flip B A },
{ exact wedge_flip_wedge_flip A B },
{ exact wedge_flip_wedge_flip B A }
end
-- TODO: wedge is associative
definition wedge_shift [unfold 3] {A B C : Type*} (x : (A B) C) : (A (B C)) :=
begin
induction x with l,
induction l with a,
exact inl a,
exact inr (inl a),
exact (glue ⋆),
exact inr (inr a),
-- exact elim_glue _ _ _,
2017-07-07 21:38:06 +00:00
exact sorry
end
definition wedge_pequiv [constructor] {A A' B B' : Type*} (a : A ≃* A') (b : B ≃* B') : A B ≃* A' B' :=
2017-06-08 20:11:02 +00:00
begin
fapply pequiv_of_equiv,
exact pushout.equiv !pconst !pconst !pconst !pconst !pequiv.refl a b (λdummy, respect_pt a) (λdummy, respect_pt b),
exact ap pushout.inl (respect_pt a)
end
definition plift_wedge.{u v} (A B : Type*) : plift.{u v} (A B) ≃* plift.{u v} A plift.{u v} B :=
2017-06-08 20:11:02 +00:00
calc plift.{u v} (A B) ≃* A B : by exact !pequiv_plift⁻¹ᵉ*
... ≃* plift.{u v} A plift.{u v} B : by exact wedge_pequiv !pequiv_plift !pequiv_plift
2017-06-08 20:11:02 +00:00
end wedge