Spectral/higher_groups.hlean

244 lines
8.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Ulrik Buchholtz, Egbert Rijke and Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke, Floris van Doorn
Formalization of the higher groups paper
-/
import .move_to_lib
open eq is_conn pointed is_trunc trunc equiv is_equiv trunc_index susp nat algebra
prod.ops sigma sigma.ops
namespace higher_group
2018-01-17 23:43:50 +00:00
set_option pp.binder_types true
2018-01-19 15:07:28 +00:00
universe variable u
2018-01-18 19:50:26 +00:00
/- We require that the carrier has a point (preserved by the equivalence) -/
2018-01-19 15:07:28 +00:00
structure Grp (n k : ) : Type := /- (n,k)Grp, denoted here as [n;k]Grp -/
2018-01-18 19:50:26 +00:00
(car : ptrunctype.{u} n)
2018-01-19 15:07:28 +00:00
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
2018-01-18 19:50:26 +00:00
(e : car ≃* Ω[k] B)
2018-01-19 15:07:28 +00:00
structure InfGrp (k : ) : Type := /- (∞,k)Grp, denoted here as [∞;k]Grp -/
2018-01-18 19:50:26 +00:00
(car : pType.{u})
2018-01-19 15:07:28 +00:00
(B : pconntype.{u} (k.-1)) /- this is Bᵏ -/
2018-01-18 19:50:26 +00:00
(e : car ≃* Ω[k] B)
structure ωGrp (n : ) := /- (n,ω)Grp, denoted here as [n;ω]Grp -/
(B : Π(k : ), (n+k)-Type*[k.-1])
(e : Π(k : ), B k ≃* Ω (B (k+1)))
attribute InfGrp.car Grp.car [coercion]
variables {n k l : }
notation `[`:95 n:0 `; ` k `]Grp`:0 := Grp n k
notation `[∞; `:95 k:0 `]Grp`:0 := InfGrp k
notation `[`:95 n:0 `;ω]Grp`:0 := ωGrp n
open Grp
open InfGrp (renaming B→iB e→ie)
open ωGrp (renaming B→oB e→oe)
/- some basic properties -/
lemma is_trunc_B' (G : [n;k]Grp) : is_trunc (k+n) (B G) :=
begin
apply is_trunc_of_is_trunc_loopn,
exact is_trunc_equiv_closed _ (e G),
exact _
end
lemma is_trunc_B (G : [n;k]Grp) : is_trunc (n+k) (B G) :=
transport (λm, is_trunc m (B G)) (add.comm k n) (is_trunc_B' G)
local attribute [instance] is_trunc_B
2018-01-19 15:07:28 +00:00
definition Grp.sigma_char (n k : ) :
Grp.{u} n k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : ptrunctype.{u} n), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨B G, G, e G⟩ },
{ intro v, exact Grp.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
2018-01-18 19:50:26 +00:00
definition Grp_equiv (n k : ) : [n;k]Grp ≃ (n+k)-Type*[k.-1] :=
Grp.sigma_char n k ⬝e
sigma_equiv_of_is_embedding_left_contr
ptruncconntype.to_pconntype
(is_embedding_ptruncconntype_to_pconntype (n+k) (k.-1))
begin
intro X,
apply is_trunc_equiv_closed_rev -2,
{ apply sigma_equiv_sigma_right, intro B',
refine _ ⬝e (ptrunctype_eq_equiv B' (ptrunctype.mk (Ω[k] X) !is_trunc_loopn_nat pt))⁻¹ᵉ,
assert lem : Π(A : n-Type*) (B : Type*) (H : is_trunc n B),
(A ≃* B) ≃ (A ≃* (ptrunctype.mk B H pt)),
{ intro A B'' H, induction B'', reflexivity },
apply lem }
end
begin
intro B' H, apply fiber.mk (ptruncconntype.mk B' (is_trunc_B (Grp.mk H.1 B' H.2)) pt _),
induction B' with G' B' e', reflexivity
end
2018-01-18 19:50:26 +00:00
2018-01-19 15:07:28 +00:00
definition Grp_equiv_pequiv {n k : } (G : [n;k]Grp) : Grp_equiv n k G ≃* B G :=
by reflexivity
2018-01-18 19:50:26 +00:00
definition Grp_eq_equiv {n k : } (G H : [n;k]Grp) : (G = H :> [n;k]Grp) ≃ (B G ≃* B H) :=
eq_equiv_fn_eq_of_equiv (Grp_equiv n k) _ _ ⬝e !ptruncconntype_eq_equiv
2018-01-19 15:07:28 +00:00
2018-01-18 19:50:26 +00:00
definition Grp_eq {n k : } {G H : [n;k]Grp} (e : B G ≃* B H) : G = H :=
(Grp_eq_equiv G H)⁻¹ᵉ e
/- similar properties for [∞;k]Grp -/
definition InfGrp.sigma_char (k : ) :
InfGrp.{u} k ≃ Σ(B : pconntype.{u} (k.-1)), Σ(X : pType.{u}), X ≃* Ω[k] B :=
begin
fapply equiv.MK,
{ intro G, exact ⟨iB G, G, ie G⟩ },
{ intro v, exact InfGrp.mk v.2.1 v.1 v.2.2 },
{ intro v, induction v with v₁ v₂, induction v₂, reflexivity },
{ intro G, induction G, reflexivity },
end
2018-01-18 19:50:26 +00:00
definition InfGrp_equiv (k : ) : [∞;k]Grp ≃ Type*[k.-1] :=
InfGrp.sigma_char k ⬝e
@sigma_equiv_of_is_contr_right _ _
(λX, is_trunc_equiv_closed_rev -2 (sigma_equiv_sigma_right (λB', !pType_eq_equiv⁻¹ᵉ)))
definition InfGrp_equiv_pequiv {k : } (G : [∞;k]Grp) : InfGrp_equiv k G ≃* iB G :=
by reflexivity
definition InfGrp_eq_equiv {k : } (G H : [∞;k]Grp) : (G = H :> [∞;k]Grp) ≃ (iB G ≃* iB H) :=
eq_equiv_fn_eq_of_equiv (InfGrp_equiv k) _ _ ⬝e !pconntype_eq_equiv
definition InfGrp_eq {k : } {G H : [∞;k]Grp} (e : iB G ≃* iB H) : G = H :=
(InfGrp_eq_equiv G H)⁻¹ᵉ e
2018-01-18 19:50:26 +00:00
-- maybe to do: ωGrp ≃ Σ(X : spectrum), is_sconn n X
/- Constructions -/
definition Decat (G : [n+1;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (B G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (e G) ⬝e* _,
2018-01-19 15:07:28 +00:00
symmetry, exact !loopn_ptrunc_pequiv_nat
2018-01-18 19:50:26 +00:00
end end
definition Disc (G : [n;k]Grp) : [n+1;k]Grp :=
Grp.mk (ptrunctype.mk G (show is_trunc (n.+1) G, from _) pt) (B G) (e G)
definition Decat_adjoint_Disc (G : [n+1;k]Grp) (H : [n;k]Grp) :
ppmap (B (Decat G)) (B H) ≃* ppmap (B G) (B (Disc H)) :=
pmap_ptrunc_pequiv (n + k) (B G) (B H)
definition Decat_adjoint_Disc_natural {G G' : [n+1;k]Grp} {H H' : [n;k]Grp}
(eG : B G' ≃* B G) (eH : B H ≃* B H') :
psquare (Decat_adjoint_Disc G H)
(Decat_adjoint_Disc G' H')
(ppcompose_left eH ∘* ppcompose_right (ptrunc_functor _ eG))
(ppcompose_left eH ∘* ppcompose_right eG) :=
sorry
definition Decat_Disc (G : [n;k]Grp) : Decat (Disc G) = G :=
Grp_eq !ptrunc_pequiv
definition InfDecat (n : ) (G : [∞;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (iB G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (ie G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition InfDisc (n : ) (G : [n;k]Grp) : [∞;k]Grp :=
InfGrp.mk G (B G) (e G)
definition InfDecat_adjoint_InfDisc (G : [∞;k]Grp) (H : [n;k]Grp) :
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
/- To do: naturality -/
definition InfDecat_InfDisc (G : [n;k]Grp) : InfDecat n (InfDisc n G) = G :=
2018-01-19 15:07:28 +00:00
Grp_eq !ptrunc_pequiv
2018-01-18 19:50:26 +00:00
definition Deloop (G : [n;k+1]Grp) : [n+1;k]Grp :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ), is_trunc n _) (succ_add n k)⁻¹ this,
Grp.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
2018-01-19 15:07:28 +00:00
definition Loop (G : [n+1;k]Grp) : [n;k+1]Grp :=
Grp.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Deloop_adjoint_Loop (G : [n;k+1]Grp) (H : [n+1;k]Grp) :
ppmap (B (Deloop G)) (B H) ≃* ppmap (B G) (B (Loop H)) :=
(connect_intro_pequiv _ !is_conn_pconntype)⁻¹ᵉ* /- still a sorry here -/
definition Loop_Deloop (G : [n;k+1]Grp) : Loop (Deloop G) = G :=
Grp_eq (connect_pequiv (is_conn_pconntype (B G)))
2018-01-18 19:50:26 +00:00
/- to do: adjunction, and Loop ∘ Deloop = id -/
definition Forget (G : [n;k+1]Grp) : [n;k]Grp :=
have is_conn k (B G), from !is_conn_pconntype,
Grp.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Stabilize (G : [n;k]Grp) : [n;k+1]Grp :=
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
Grp.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
apply loopn_pequiv_loopn,
exact ptrunc_change_index !of_nat_add_of_nat _
end end
/- to do: adjunction -/
definition ωForget (k : ) (G : [n;ω]Grp) : [n;k]Grp :=
have is_trunc (n + k) (oB G k), from _,
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn_nat,
2018-01-18 19:50:26 +00:00
Grp.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
2018-01-19 15:07:28 +00:00
definition nStabilize (H : k ≤ l) (G : Grp.{u} n k) : Grp.{u} n l :=
2018-01-18 19:50:26 +00:00
begin
induction H with l H IH, exact G, exact Stabilize IH
end
2018-01-19 15:07:28 +00:00
lemma Stabilize_pequiv (H : k ≥ n + 2) (G : [n;k]Grp) : B G ≃* Ω (B (Stabilize G)) :=
sorry
2018-01-18 19:50:26 +00:00
theorem stabilization (H : k ≥ n + 2) : is_equiv (@Stabilize n k) :=
sorry
2018-01-19 15:07:28 +00:00
definition ωGrp.mk_le {n : } (k₀ : )
(B : Π⦃k : ℕ⦄, k₀ ≤ k → (n+k)-Type*[k.-1])
(e : Π⦃k : ℕ⦄ (H : k₀ ≤ k), B H ≃* Ω (B (le.step H))) : [n;ω]Grp :=
sorry
2018-01-18 19:50:26 +00:00
/- for l ≤ k we want to define it as Ω[k-l] (B G),
for H : l ≥ k we want to define it as nStabilize H G -/
2018-01-19 15:07:28 +00:00
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]Grp) : [n;ω]Grp :=
ωGrp.mk_le k (λl H', Grp_equiv n l (nStabilize H' G))
(λl H', Stabilize_pequiv (le.trans H H') (nStabilize H' G))
2018-01-19 15:07:28 +00:00
2018-01-18 19:50:26 +00:00
definition ωStabilize (G : [n;k]Grp) : [n;ω]Grp :=
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
/- to do: adjunction (and ωStabilize ∘ ωForget =?= id) -/
end higher_group