unindent higher_groups

This commit is contained in:
Floris van Doorn 2018-01-18 14:50:26 -05:00
parent 44cf88a2a5
commit f6bbc75365

View file

@ -11,175 +11,174 @@ open eq is_conn pointed is_trunc trunc equiv is_equiv trunc_index susp nat algeb
namespace higher_group
set_option pp.binder_types true
/- We require that the carrier has a point (preserved by the equivalence) -/
/- We require that the carrier has a point (preserved by the equivalence) -/
structure Grp.{u} (n k : ) : Type.{u+1} := /- (n,k)Grp, denoted here as [n;k]Grp -/
(car : ptrunctype.{u} n)
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure Grp.{u} (n k : ) : Type.{u+1} := /- (n,k)Grp, denoted here as [n;k]Grp -/
(car : ptrunctype.{u} n)
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure InfGrp.{u} (k : ) : Type.{u+1} := /- (∞,k)Grp, denoted here as [∞;k]Grp -/
(car : pType.{u})
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure InfGrp.{u} (k : ) : Type.{u+1} := /- (∞,k)Grp, denoted here as [∞;k]Grp -/
(car : pType.{u})
(B : pconntype.{u} (k.-1))
(e : car ≃* Ω[k] B)
structure ωGrp (n : ) := /- (n,ω)Grp, denoted here as [n;ω]Grp -/
(B : Π(k : ), (n+k)-Type*[k.-1])
(e : Π(k : ), B k ≃* Ω (B (k+1)))
structure ωGrp (n : ) := /- (n,ω)Grp, denoted here as [n;ω]Grp -/
(B : Π(k : ), (n+k)-Type*[k.-1])
(e : Π(k : ), B k ≃* Ω (B (k+1)))
attribute InfGrp.car Grp.car [coercion]
attribute InfGrp.car Grp.car [coercion]
variables {n k l : }
notation `[`:95 n:0 `; ` k `]Grp`:0 := Grp n k
notation `[∞; `:95 k:0 `]Grp`:0 := InfGrp k
notation `[`:95 n:0 `;ω]Grp`:0 := ωGrp n
variables {n k l : }
notation `[`:95 n:0 `; ` k `]Grp`:0 := Grp n k
notation `[∞; `:95 k:0 `]Grp`:0 := InfGrp k
notation `[`:95 n:0 `;ω]Grp`:0 := ωGrp n
open Grp
open InfGrp (renaming B→iB e→ie)
open ωGrp (renaming B→oB e→oe)
open Grp
open InfGrp (renaming B→iB e→ie)
open ωGrp (renaming B→oB e→oe)
/- some basic properties -/
lemma is_trunc_B' (G : [n;k]Grp) : is_trunc (k+n) (B G) :=
begin
apply is_trunc_of_is_trunc_loopn,
exact is_trunc_equiv_closed _ (e G),
exact _
end
/- some basic properties -/
lemma is_trunc_B' (G : [n;k]Grp) : is_trunc (k+n) (B G) :=
begin
apply is_trunc_of_is_trunc_loopn,
exact is_trunc_equiv_closed _ (e G),
exact _
end
lemma is_trunc_B (G : [n;k]Grp) : is_trunc (n+k) (B G) :=
transport (λm, is_trunc m (B G)) (add.comm k n) (is_trunc_B' G)
lemma is_trunc_B (G : [n;k]Grp) : is_trunc (n+k) (B G) :=
transport (λm, is_trunc m (B G)) (add.comm k n) (is_trunc_B' G)
local attribute [instance] is_trunc_B
local attribute [instance] is_trunc_B
/- some equivalences -/
definition Grp_equiv (n k : ) : [n;k]Grp ≃ (n+k)-Type*[k.-1] :=
let f : Π(B : Type*[k.-1]) (H : Σ(X : n-Type*), X ≃* Ω[k] B), (n+k)-Type*[k.-1] :=
λB' H, ptruncconntype.mk B' (is_trunc_B (Grp.mk H.1 B' H.2)) pt _
in
calc
[n;k]Grp ≃ Σ(B : Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B : sorry
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B :
@sigma_equiv_of_is_embedding_left _ _ _ sorry ptruncconntype.to_pconntype sorry
(λB' H, fiber.mk (f B' H) sorry)
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*),
X = ptrunctype_of_pType (Ω[k] B) !is_trunc_loopn_nat :> n-Type* :
sigma_equiv_sigma_right (λB, sigma_equiv_sigma_right (λX, sorry))
... ≃ (n+k)-Type*[k.-1] : sigma_equiv_of_is_contr_right
definition Grp_equiv (n k : ) : [n;k]Grp ≃ (n+k)-Type*[k.-1] :=
let f : Π(B : Type*[k.-1]) (H : Σ(X : n-Type*), X ≃* Ω[k] B), (n+k)-Type*[k.-1] :=
λB' H, ptruncconntype.mk B' (is_trunc_B (Grp.mk H.1 B' H.2)) pt _
in
calc
[n;k]Grp ≃ Σ(B : Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B : sorry
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*), X ≃* Ω[k] B :
@sigma_equiv_of_is_embedding_left _ _ _ sorry ptruncconntype.to_pconntype sorry
(λB' H, fiber.mk (f B' H) sorry)
... ≃ Σ(B : (n+k)-Type*[k.-1]), Σ(X : n-Type*),
X = ptrunctype_of_pType (Ω[k] B) !is_trunc_loopn_nat :> n-Type* :
sigma_equiv_sigma_right (λB, sigma_equiv_sigma_right (λX, sorry))
... ≃ (n+k)-Type*[k.-1] : sigma_equiv_of_is_contr_right
definition Grp_eq_equiv {n k : } (G H : [n;k]Grp) : (G = H) ≃ (B G ≃* B H) :=
sorry
definition Grp_eq_equiv {n k : } (G H : [n;k]Grp) : (G = H) ≃ (B G ≃* B H) :=
sorry
definition Grp_eq {n k : } {G H : [n;k]Grp} (e : B G ≃* B H) : G = H :=
(Grp_eq_equiv G H)⁻¹ᵉ e
definition Grp_eq {n k : } {G H : [n;k]Grp} (e : B G ≃* B H) : G = H :=
(Grp_eq_equiv G H)⁻¹ᵉ e
definition InfGrp_equiv (k : ) : [∞;k]Grp ≃ Type*[k.-1] :=
sorry
definition InfGrp_equiv (k : ) : [∞;k]Grp ≃ Type*[k.-1] :=
sorry
-- maybe to do: ωGrp ≃ Σ(X : spectrum), is_sconn n X
-- maybe to do: ωGrp ≃ Σ(X : spectrum), is_sconn n X
/- Constructions -/
definition Decat (G : [n+1;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (B G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (e G) ⬝e* _,
symmetry, exact sorry --!loopn_ptrunc_pequiv
end end
/- Constructions -/
definition Decat (G : [n+1;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (B G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (e G) ⬝e* _,
symmetry, exact sorry --!loopn_ptrunc_pequiv
end end
definition Disc (G : [n;k]Grp) : [n+1;k]Grp :=
Grp.mk (ptrunctype.mk G (show is_trunc (n.+1) G, from _) pt) (B G) (e G)
definition Disc (G : [n;k]Grp) : [n+1;k]Grp :=
Grp.mk (ptrunctype.mk G (show is_trunc (n.+1) G, from _) pt) (B G) (e G)
definition Decat_adjoint_Disc (G : [n+1;k]Grp) (H : [n;k]Grp) :
ppmap (B (Decat G)) (B H) ≃* ppmap (B G) (B (Disc H)) :=
pmap_ptrunc_pequiv (n + k) (B G) (B H)
definition Decat_adjoint_Disc (G : [n+1;k]Grp) (H : [n;k]Grp) :
ppmap (B (Decat G)) (B H) ≃* ppmap (B G) (B (Disc H)) :=
pmap_ptrunc_pequiv (n + k) (B G) (B H)
definition Decat_adjoint_Disc_natural {G G' : [n+1;k]Grp} {H H' : [n;k]Grp}
(eG : B G' ≃* B G) (eH : B H ≃* B H') :
psquare (Decat_adjoint_Disc G H)
(Decat_adjoint_Disc G' H')
(ppcompose_left eH ∘* ppcompose_right (ptrunc_functor _ eG))
(ppcompose_left eH ∘* ppcompose_right eG) :=
sorry
definition Decat_adjoint_Disc_natural {G G' : [n+1;k]Grp} {H H' : [n;k]Grp}
(eG : B G' ≃* B G) (eH : B H ≃* B H') :
psquare (Decat_adjoint_Disc G H)
(Decat_adjoint_Disc G' H')
(ppcompose_left eH ∘* ppcompose_right (ptrunc_functor _ eG))
(ppcompose_left eH ∘* ppcompose_right eG) :=
sorry
definition Decat_Disc (G : [n;k]Grp) : Decat (Disc G) = G :=
Grp_eq !ptrunc_pequiv
definition Decat_Disc (G : [n;k]Grp) : Decat (Disc G) = G :=
Grp_eq !ptrunc_pequiv
definition InfDecat (n : ) (G : [∞;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (iB G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (ie G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition InfDecat (n : ) (G : [∞;k]Grp) : [n;k]Grp :=
Grp.mk (ptrunctype.mk (ptrunc n G) _ pt) (pconntype.mk (ptrunc (n + k) (iB G)) _ pt)
abstract begin
refine ptrunc_pequiv_ptrunc n (ie G) ⬝e* _,
symmetry, exact !loopn_ptrunc_pequiv_nat
end end
definition InfDisc (n : ) (G : [n;k]Grp) : [∞;k]Grp :=
InfGrp.mk G (B G) (e G)
definition InfDisc (n : ) (G : [n;k]Grp) : [∞;k]Grp :=
InfGrp.mk G (B G) (e G)
definition InfDecat_adjoint_InfDisc (G : [∞;k]Grp) (H : [n;k]Grp) :
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
definition InfDecat_adjoint_InfDisc (G : [∞;k]Grp) (H : [n;k]Grp) :
ppmap (B (InfDecat n G)) (B H) ≃* ppmap (iB G) (iB (InfDisc n H)) :=
pmap_ptrunc_pequiv (n + k) (iB G) (B H)
/- To do: naturality -/
/- To do: naturality -/
definition InfDecat_InfDisc (G : [n;k]Grp) : InfDecat n (InfDisc n G) = G :=
sorry
definition InfDecat_InfDisc (G : [n;k]Grp) : InfDecat n (InfDisc n G) = G :=
sorry
definition Loop (G : [n+1;k]Grp) : [n;k+1]Grp :=
Grp.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Loop (G : [n+1;k]Grp) : [n;k+1]Grp :=
Grp.mk (ptrunctype.mk (Ω G) !is_trunc_loop_nat pt)
(connconnect k (B G))
(loop_pequiv_loop (e G) ⬝e* (loopn_connect k (B G))⁻¹ᵉ*)
definition Deloop (G : [n;k+1]Grp) : [n+1;k]Grp :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ), is_trunc n _) (succ_add n k)⁻¹ this,
Grp.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
definition Deloop (G : [n;k+1]Grp) : [n+1;k]Grp :=
have is_conn k (B G), from is_conn_pconntype (B G),
have is_trunc (n + (k + 1)) (B G), from is_trunc_B G,
have is_trunc ((n + 1) + k) (B G), from transport (λ(n : ), is_trunc n _) (succ_add n k)⁻¹ this,
Grp.mk (ptrunctype.mk (Ω[k] (B G)) !is_trunc_loopn_nat pt)
(pconntype.mk (B G) !is_conn_of_is_conn_succ pt)
(pequiv_of_equiv erfl idp)
/- to do: adjunction, and Loop ∘ Deloop = id -/
/- to do: adjunction, and Loop ∘ Deloop = id -/
definition Forget (G : [n;k+1]Grp) : [n;k]Grp :=
have is_conn k (B G), from !is_conn_pconntype,
Grp.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Forget (G : [n;k+1]Grp) : [n;k]Grp :=
have is_conn k (B G), from !is_conn_pconntype,
Grp.mk G (pconntype.mk (Ω (B G)) !is_conn_loop pt)
abstract begin
refine e G ⬝e* !loopn_succ_in
end end
definition Stabilize (G : [n;k]Grp) : [n;k+1]Grp :=
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
Grp.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
apply loopn_pequiv_loopn,
exact ptrunc_change_index !of_nat_add_of_nat _
end end
definition Stabilize (G : [n;k]Grp) : [n;k+1]Grp :=
have is_conn k (susp (B G)), from !is_conn_susp,
have Hconn : is_conn k (ptrunc (n + k + 1) (susp (B G))), from !is_conn_ptrunc,
Grp.mk (ptrunctype.mk (ptrunc n (Ω[k+1] (susp (B G)))) _ pt)
(pconntype.mk (ptrunc (n+k+1) (susp (B G))) Hconn pt)
abstract begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
apply loopn_pequiv_loopn,
exact ptrunc_change_index !of_nat_add_of_nat _
end end
/- to do: adjunction -/
/- to do: adjunction -/
definition ωForget (k : ) (G : [n;ω]Grp) : [n;k]Grp :=
have is_trunc (n + k) (oB G k), from _,
have is_trunc (n +[ℕ₋₂] k) (oB G k), from transport (λn, is_trunc n _) !of_nat_add_of_nat⁻¹ this,
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn,
Grp.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
definition ωForget (k : ) (G : [n;ω]Grp) : [n;k]Grp :=
have is_trunc (n + k) (oB G k), from _,
have is_trunc (n +[ℕ₋₂] k) (oB G k), from transport (λn, is_trunc n _) !of_nat_add_of_nat⁻¹ this,
have is_trunc n (Ω[k] (oB G k)), from !is_trunc_loopn,
Grp.mk (ptrunctype.mk (Ω[k] (oB G k)) _ pt) (oB G k) (pequiv_of_equiv erfl idp)
definition nStabilize.{u} (H : k ≤ l) (G : Grp.{u} n k) : Grp.{u} n l :=
begin
induction H with l H IH, exact G, exact Stabilize IH
end
definition nStabilize.{u} (H : k ≤ l) (G : Grp.{u} n k) : Grp.{u} n l :=
begin
induction H with l H IH, exact G, exact Stabilize IH
end
theorem stabilization (H : k ≥ n + 2) : is_equiv (@Stabilize n k) :=
sorry
theorem stabilization (H : k ≥ n + 2) : is_equiv (@Stabilize n k) :=
sorry
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]Grp) : [n;ω]Grp :=
ωGrp.mk (λl, sorry) (λl, sorry)
definition ωStabilize_of_le (H : k ≥ n + 2) (G : [n;k]Grp) : [n;ω]Grp :=
ωGrp.mk (λl, sorry) (λl, sorry)
/- for l ≤ k we want to define it as Ω[k-l] (B G),
for H : l ≥ k we want to define it as nStabilize H G -/
/- for l ≤ k we want to define it as Ω[k-l] (B G),
for H : l ≥ k we want to define it as nStabilize H G -/
definition ωStabilize (G : [n;k]Grp) : [n;ω]Grp :=
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
definition ωStabilize (G : [n;k]Grp) : [n;ω]Grp :=
ωStabilize_of_le !le_max_left (nStabilize !le_max_right G)
/- to do: adjunction (and ωStabilize ∘ ωForget =?= id) -/
/- to do: adjunction (and ωStabilize ∘ ωForget =?= id) -/
end higher_group