Spectral/algebra/is_short_exact.hlean

58 lines
2.6 KiB
Text
Raw Normal View History

2017-03-02 22:06:13 +00:00
/-
Copyright (c) 2017 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Short exact sequences
-/
import .quotient_group
open eq nat int susp pointed pmap sigma is_equiv equiv fiber algebra trunc trunc_index pi group
is_trunc function sphere unit sum prod
structure is_short_exact {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
(is_emb : is_embedding f)
(im_in_ker : Π(a:A), g (f a) = pt)
(ker_in_im : Π(b:B), (g b = pt) → image f b)
(is_surj : is_surjective g)
structure is_short_exact_t {A B : Type} {C : Type*} (f : A → B) (g : B → C) :=
(is_emb : is_embedding f)
(im_in_ker : Π(a:A), g (f a) = pt)
(ker_in_im : Π(b:B), (g b = pt) → fiber f b)
2017-03-02 22:08:00 +00:00
(is_surj : is_split_surjective g)
lemma is_short_exact_of_is_exact {X A B C Y : Group}
2017-05-19 18:55:13 +00:00
(k : X →g A) (f : A →g B) (g : B →g C) (l : C →g Y)
(hX : is_contr X) (hY : is_contr Y)
(kf : is_exact k f) (fg : is_exact f g) (gl : is_exact g l) : is_short_exact f g :=
2017-05-19 18:55:13 +00:00
begin
constructor,
{ apply to_is_embedding_homomorphism, intro a p,
induction is_exact.ker_in_im kf a p with x q,
exact q⁻¹ ⬝ ap k !is_prop.elim ⬝ to_respect_one k },
{ exact is_exact.im_in_ker fg },
{ exact is_exact.ker_in_im fg },
{ intro c, exact is_exact.ker_in_im gl c !is_prop.elim },
end
lemma is_short_exact_equiv {A B A' B' : Type} {C C' : Type*}
{f' : A' → B'} {g' : B' → C'} (f : A → B) (g : B → C)
(eA : A ≃ A') (eB : B ≃ B') (eC : C ≃* C')
(h₁ : hsquare f f' eA eB) (h₂ : hsquare g g' eB eC)
(H : is_short_exact f' g') : is_short_exact f g :=
2017-05-19 18:55:13 +00:00
begin
constructor,
{ apply is_embedding_homotopy_closed_rev (homotopy_top_of_hsquare h₁),
apply is_embedding_compose, apply is_embedding_of_is_equiv,
apply is_embedding_compose, apply is_short_exact.is_emb H, apply is_embedding_of_is_equiv },
{ intro a, refine homotopy_top_of_hsquare' (hhconcat h₁ h₂) a ⬝ _,
refine ap eC⁻¹ _ ⬝ respect_pt eC⁻¹ᵉ*, exact is_short_exact.im_in_ker H (eA a) },
{ intro b p, note q := eq_of_inv_eq ((homotopy_top_of_hsquare' h₂ b)⁻¹ ⬝ p) ⬝ respect_pt eC,
induction is_short_exact.ker_in_im H (eB b) q with a' r,
apply image.mk (eA⁻¹ a'),
exact eq_of_fn_eq_fn eB ((homotopy_top_of_hsquare h₁⁻¹ʰᵗʸᵛ a')⁻¹ ⬝ r) },
{ apply is_surjective_homotopy_closed_rev (homotopy_top_of_hsquare' h₂),
apply is_surjective_compose, apply is_surjective_of_is_equiv,
apply is_surjective_compose, apply is_short_exact.is_surj H, apply is_surjective_of_is_equiv }
2017-05-19 18:55:13 +00:00
end