Spectral/homotopy/pushout.hlean

995 lines
40 KiB
Text
Raw Normal View History

import ..algebra.exactness homotopy.cofiber homotopy.wedge homotopy.smash
open eq function is_trunc sigma prod lift is_equiv equiv pointed sum unit bool cofiber
namespace pushout
section
variables {TL BL TR : Type*} {f : TL →* BL} {g : TL →* TR}
{TL' BL' TR' : Type*} {f' : TL' →* BL'} {g' : TL' →* TR'}
(tl : TL ≃ TL') (bl : BL ≃* BL') (tr : TR ≃ TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl)
definition ppushout_functor [constructor] (tl : TL → TL') (bl : BL →* BL') (tr : TR → TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl) : ppushout f g →* ppushout f' g' :=
begin
fconstructor,
{ exact pushout.functor tl bl tr fh gh },
{ exact ap inl (respect_pt bl) },
end
definition ppushout_pequiv (tl : TL ≃ TL') (bl : BL ≃* BL') (tr : TR ≃ TR')
(fh : bl ∘ f ~ f' ∘ tl) (gh : tr ∘ g ~ g' ∘ tl) : ppushout f g ≃* ppushout f' g' :=
pequiv_of_equiv (pushout.equiv _ _ _ _ tl bl tr fh gh) (ap inl (respect_pt bl))
end
/-
WIP: proving that satisfying the universal property of the pushout is equivalent to
being equivalent to the pushout
-/
universe variables u₁ u₂ u₃ u₄
variables {A : Type.{u₁}} {B : Type.{u₂}} {C : Type.{u₃}} {D D' : Type.{u₄}}
{f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g)
{h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g)
-- (f : A → B) (g : A → C) (h : B → D) (k : C → D)
include p
definition is_pushout : Type :=
Π⦃X : Type.{max u₁ u₂ u₃ u₄}⦄ (h' : B → X) (k' : C → X) (p' : h' ∘ f ~ k' ∘ g),
is_contr (Σ(l : D → X) (v : l ∘ h ~ h' × l ∘ k ~ k'),
Πa, square (prod.pr1 v (f a)) (prod.pr2 v (g a)) (ap l (p a)) (p' a))
definition cocone [reducible] (X : Type) : Type :=
Σ(v : (B → X) × (C → X)), prod.pr1 v ∘ f ~ prod.pr2 v ∘ g
definition cocone_of_map [constructor] (X : Type) (l : D → X) : cocone p X :=
⟨(l ∘ h, l ∘ k), λa, ap l (p a)⟩
-- definition cocone_of_map (X : Type) (l : D → X) : Σ(h' : B → X) (k' : C → X),
-- h' ∘ f ~ k' ∘ g :=
-- ⟨l ∘ h, l ∘ k, λa, ap l (p a)⟩
omit p
definition is_pushout2 [reducible] : Type :=
Π(X : Type.{max u₁ u₂ u₃ u₄}), is_equiv (cocone_of_map p X)
section
open sigma.ops
protected definition inv_left (H : is_pushout2 p) {X : Type} (v : cocone p X) :
(cocone_of_map p X)⁻¹ᶠ v ∘ h ~ prod.pr1 v.1 :=
ap10 (ap prod.pr1 (right_inv (cocone_of_map p X) v)..1)
protected definition inv_right (H : is_pushout2 p) {X : Type} (v : cocone p X) :
(cocone_of_map p X)⁻¹ᶠ v ∘ k ~ prod.pr2 v.1 :=
ap10 (ap prod.pr2 (right_inv (cocone_of_map p X) v)..1)
end
section
local attribute is_pushout [reducible]
definition is_prop_is_pushout : is_prop (is_pushout p) :=
_
local attribute is_pushout2 [reducible]
definition is_prop_is_pushout2 : is_prop (is_pushout2 p) :=
_
end
definition ap_eq_apd10_ap {A B : Type} {C : B → Type} (f : A → Πb, C b) {a a' : A} (p : a = a') (b : B)
: ap (λa, f a b) p = apd10 (ap f p) b :=
by induction p; reflexivity
variables (f g)
definition is_pushout2_pushout : @is_pushout2 _ _ _ _ f g inl inr glue :=
λX, to_is_equiv (pushout_arrow_equiv f g X ⬝e assoc_equiv_prod _)
definition is_equiv_of_is_pushout2_simple [constructor] {A B C D : Type.{u₁}}
{f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g)
{h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g)
(H : is_pushout2 p) : D ≃ pushout f g :=
begin
fapply equiv.MK,
{ exact (cocone_of_map p _)⁻¹ᶠ ⟨(inl, inr), glue⟩ },
{ exact pushout.elim h k p },
{ intro x, exact sorry
},
{ apply ap10,
apply eq_of_fn_eq_fn (equiv.mk _ (H D)),
fapply sigma_eq,
{ esimp, fapply prod_eq,
apply eq_of_homotopy, intro b,
exact ap (pushout.elim h k p) (pushout.inv_left p H ⟨(inl, inr), glue⟩ b),
apply eq_of_homotopy, intro c,
exact ap (pushout.elim h k p) (pushout.inv_right p H ⟨(inl, inr), glue⟩ c) },
{ apply pi.pi_pathover_constant, intro a,
apply eq_pathover,
refine !ap_eq_apd10_ap ⬝ph _ ⬝hp !ap_eq_apd10_ap⁻¹,
refine ap (λx, apd10 x _) (ap_compose (λx, x ∘ f) pr1 _ ⬝ ap02 _ !prod_eq_pr1) ⬝ph _
⬝hp ap (λx, apd10 x _) (ap_compose (λx, x ∘ g) pr2 _ ⬝ ap02 _ !prod_eq_pr2)⁻¹,
refine apd10 !apd10_ap_precompose_dependent a ⬝ph _ ⬝hp apd10 !apd10_ap_precompose_dependent⁻¹ a,
refine apd10 !apd10_eq_of_homotopy (f a) ⬝ph _ ⬝hp apd10 !apd10_eq_of_homotopy⁻¹ (g a),
refine ap_compose (pushout.elim h k p) _ _ ⬝pv _,
refine aps (pushout.elim h k p) _ ⬝vp (!elim_glue ⬝ !ap_id⁻¹),
esimp, exact sorry
},
}
end
-- definition is_equiv_of_is_pushout2 [constructor] (H : is_pushout2 p) : D ≃ pushout f g :=
-- begin
-- fapply equiv.MK,
-- { exact down.{_ u₄} ∘ (cocone_of_map p _)⁻¹ᶠ ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ },
-- { exact pushout.elim h k p },
-- { intro x, exact sorry
-- },
-- { intro d, apply eq_of_fn_eq_fn (equiv_lift D), esimp, revert d,
-- apply ap10,
-- apply eq_of_fn_eq_fn (equiv.mk _ (H (lift.{_ (max u₁ u₂ u₃)} D))),
-- fapply sigma_eq,
-- { esimp, fapply prod_eq,
-- apply eq_of_homotopy, intro b, apply ap up, esimp,
-- exact ap (pushout.elim h k p ∘ down.{_ u₄})
-- (pushout.inv_left p H ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ b),
-- exact sorry },
-- { exact sorry },
-- -- note q := @eq_of_is_contr _ H''
-- -- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- -- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- -- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- -- ⟨up, (λx, idp, λx, idp)⟩,
-- -- exact ap down (ap10 q..1 d)
-- }
-- end
/- composing pushouts -/
definition pushout_vcompose_to [unfold 8] {A B C D : Type} {f : A → B} {g : A → C} {h : B → D}
(x : pushout h (@inl _ _ _ f g)) : pushout (h ∘ f) g :=
begin
induction x with d y b,
{ exact inl d },
{ induction y with b c a,
{ exact inl (h b) },
{ exact inr c },
{ exact glue a }},
{ reflexivity }
end
definition pushout_vcompose_from [unfold 8] {A B C D : Type} {f : A → B} {g : A → C} {h : B → D}
(x : pushout (h ∘ f) g) : pushout h (@inl _ _ _ f g) :=
begin
induction x with d c a,
{ exact inl d },
{ exact inr (inr c) },
{ exact glue (f a) ⬝ ap inr (glue a) }
end
definition pushout_vcompose [constructor] {A B C D : Type} (f : A → B) (g : A → C) (h : B → D) :
pushout h (@inl _ _ _ f g) ≃ pushout (h ∘ f) g :=
begin
fapply equiv.MK,
{ exact pushout_vcompose_to },
{ exact pushout_vcompose_from },
{ intro x, induction x with d c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose pushout_vcompose_to _ _ ⬝ ap02 _ !elim_glue ⬝ _,
refine !ap_con ⬝ !elim_glue ◾ !ap_compose'⁻¹ ⬝ !idp_con ⬝ _, esimp, apply elim_glue }},
{ intro x, induction x with d y b,
{ reflexivity },
{ induction y with b c a,
{ exact glue b },
{ reflexivity },
{ apply eq_pathover, refine ap_compose pushout_vcompose_from _ _ ⬝ph _,
esimp, refine ap02 _ !elim_glue ⬝ !elim_glue ⬝ph _, apply square_of_eq, reflexivity }},
{ apply eq_pathover_id_right, esimp,
refine ap_compose pushout_vcompose_from _ _ ⬝ ap02 _ !elim_glue ⬝ph _, apply square_of_eq,
reflexivity }}
end
definition pushout_hcompose {A B C D : Type} (f : A → B) (g : A → C) (h : C → D) :
pushout (@inr _ _ _ f g) h ≃ pushout f (h ∘ g) :=
calc
pushout (@inr _ _ _ f g) h ≃ pushout h (@inr _ _ _ f g) : pushout.symm
... ≃ pushout h (@inl _ _ _ g f) :
pushout.equiv _ _ _ _ erfl erfl (pushout.symm f g) (λa, idp) (λa, idp)
... ≃ pushout (h ∘ g) f : pushout_vcompose
... ≃ pushout f (h ∘ g) : pushout.symm
definition pushout_vcompose_equiv {A B C D E : Type} (f : A → B) {g : A → C} {h : B → D}
{hf : A → D} {k : B → E} (e : E ≃ pushout f g) (p : k ~ e⁻¹ᵉ ∘ inl) (q : h ∘ f ~ hf) :
pushout h k ≃ pushout hf g :=
begin
refine _ ⬝e pushout_vcompose f g h ⬝e _,
{ fapply pushout.equiv,
reflexivity,
reflexivity,
exact e,
reflexivity,
exact homotopy_of_homotopy_inv_post e _ _ p },
{ fapply pushout.equiv,
reflexivity,
reflexivity,
reflexivity,
exact q,
reflexivity },
end
definition pushout_hcompose_equiv {A B C D E : Type} {f : A → B} (g : A → C) {h : C → E}
{hg : A → E} {k : C → D} (e : D ≃ pushout f g) (p : k ~ e⁻¹ᵉ ∘ inr) (q : h ∘ g ~ hg) :
pushout k h ≃ pushout f hg :=
calc
pushout k h ≃ pushout h k : pushout.symm
... ≃ pushout hg f : by exact pushout_vcompose_equiv _ (e ⬝e pushout.symm f g) p q
... ≃ pushout f hg : pushout.symm
definition pushout_of_equiv_left_to [unfold 6] {A B C : Type} {f : A ≃ B} {g : A → C}
(x : pushout f g) : C :=
begin
induction x with b c a,
{ exact g (f⁻¹ b) },
{ exact c },
{ exact ap g (left_inv f a) }
end
definition pushout_of_equiv_left [constructor] {A B C : Type} (f : A ≃ B) (g : A → C) :
pushout f g ≃ C :=
begin
fapply equiv.MK,
{ exact pushout_of_equiv_left_to },
{ exact inr },
{ intro c, reflexivity },
{ intro x, induction x with b c a,
{ exact (glue (f⁻¹ b))⁻¹ ⬝ ap inl (right_inv f b) },
{ reflexivity },
{ apply eq_pathover_id_right, refine ap_compose inr _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
apply move_top_of_left, apply move_left_of_bot,
refine ap02 _ (adj f _) ⬝ !ap_compose⁻¹ ⬝pv _ ⬝vp !ap_compose,
apply natural_square_tr }}
end
definition pushout_of_equiv_right [constructor] {A B C : Type} (f : A → B) (g : A ≃ C) :
pushout f g ≃ B :=
calc
pushout f g ≃ pushout g f : pushout.symm f g
... ≃ B : pushout_of_equiv_left g f
-- todo: define pushout.equiv (renamed to pushout_equiv_pushout) using this
variables {A₁ B₁ C₁ A₂ B₂ C₂ A₃ B₃ C₃ : Type} {f₁ : A₁ → B₁} {g₁ : A₁ → C₁}
{f₂ : A₂ → B₂} {g₂ : A₂ → C₂} {f₃ : A₃ → B₃} {g₃ : A₃ → C₃}
{h₂ : A₂ → A₃} {h₁ : A₁ → A₂}
{i₂ : B₂ → B₃} {i₁ : B₁ → B₂}
{j₂ : C₂ → C₃} {j₁ : C₁ → C₂}
(p₂ : i₂ ∘ f₂ ~ f₃ ∘ h₂) (q₂ : j₂ ∘ g₂ ~ g₃ ∘ h₂)
(p₁ : i₁ ∘ f₁ ~ f₂ ∘ h₁) (q₁ : j₁ ∘ g₁ ~ g₂ ∘ h₁)
definition pushout_functor_compose :
pushout.functor (h₂ ∘ h₁) (i₂ ∘ i₁) (j₂ ∘ j₁) (p₁ ⬝htyv p₂) (q₁ ⬝htyv q₂) ~
pushout.functor h₂ i₂ j₂ p₂ q₂ ∘ pushout.functor h₁ i₁ j₁ p₁ q₁ :=
begin
intro x, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp,
refine !elim_glue ⬝ whisker_right _ (!ap_con ⬝ !ap_compose'⁻¹ ◾ idp) ◾
(ap02 _ !con_inv ⬝ !ap_con ⬝ whisker_left _ (ap02 _ !ap_inv⁻¹ ⬝ !ap_compose'⁻¹)) ⬝ _ ⬝
(ap_compose (pushout.functor h₂ i₂ j₂ p₂ q₂) _ _ ⬝ ap02 _ !elim_glue)⁻¹,
refine _ ⬝ (!ap_con ⬝ (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_glue) ◾ !ap_compose'⁻¹)⁻¹ᵖ,
refine !con.assoc⁻¹ ⬝ whisker_right _ _,
exact whisker_right _ !con.assoc ⬝ !con.assoc }
end
variables {p₁ q₁}
definition pushout_functor_homotopy_constant {p₁' : i₁ ∘ f₁ ~ f₂ ∘ h₁} {q₁' : j₁ ∘ g₁ ~ g₂ ∘ h₁}
(p : p₁ ~ p₁') (q : q₁ ~ q₁') :
pushout.functor h₁ i₁ j₁ p₁ q₁ ~ pushout.functor h₁ i₁ j₁ p₁' q₁' :=
begin
induction p, induction q, reflexivity
end
definition pushout_functor_homotopy {h₁ h₂ : A₁ → A₂} {i₁ i₂ : B₁ → B₂} {j₁ j₂ : C₁ → C₂}
{p₁ : i₁ ∘ f₁ ~ f₂ ∘ h₁} {q₁ : j₁ ∘ g₁ ~ g₂ ∘ h₁}
{p₂ : i₂ ∘ f₁ ~ f₂ ∘ h₂} {q₂ : j₂ ∘ g₁ ~ g₂ ∘ h₂}
(r : h₁ ~ h₂) (s : i₁ ~ i₂) (t : j₁ ~ j₂)
(u : r ⬝htyh p₁ ~ p₂ ⬝htyh s) (v : r ⬝htyh q₁ ~ q₂ ⬝htyh t) :
pushout.functor h₁ i₁ j₁ p₁ q₁ ~ pushout.functor h₂ i₂ j₂ p₂ q₂ :=
begin
induction r, induction s, induction t, apply pushout_functor_homotopy_constant,
{ exact (rfl_hhconcat p₁)⁻¹ʰᵗʸ ⬝hty u ⬝hty hhconcat_rfl p₂ },
exact (rfl_hhconcat q₁)⁻¹ʰᵗʸ ⬝hty v ⬝hty hhconcat_rfl q₂
end
/- pushout where one map is constant is a cofiber -/
definition pushout_const_equiv_to [unfold 6] {A B C : Type} {f : A → B} {c₀ : C}
(x : pushout f (const A c₀)) : cofiber (sum_functor f (const unit c₀)) :=
begin
induction x with b c a,
{ exact !cod (sum.inl b) },
{ exact !cod (sum.inr c) },
{ exact glue (sum.inl a) ⬝ (glue (sum.inr ⋆))⁻¹ }
end
definition pushout_const_equiv_from [unfold 6] {A B C : Type} {f : A → B} {c₀ : C}
(x : cofiber (sum_functor f (const unit c₀))) : pushout f (const A c₀) :=
begin
induction x with v v,
{ induction v with b c, exact inl b, exact inr c },
{ exact inr c₀ },
{ induction v with a u, exact glue a, reflexivity }
end
definition pushout_const_equiv [constructor] {A B C : Type} (f : A → B) (c₀ : C) :
pushout f (const A c₀) ≃ cofiber (sum_functor f (const unit c₀)) :=
begin
fapply equiv.MK,
{ exact pushout_const_equiv_to },
{ exact pushout_const_equiv_from },
{ intro x, induction x with v v,
{ induction v with b c, reflexivity, reflexivity },
{ exact glue (sum.inr ⋆) },
{ apply eq_pathover_id_right,
refine ap_compose pushout_const_equiv_to _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction v with a u,
{ refine !elim_glue ⬝ph _, apply whisker_bl, exact hrfl },
{ induction u, exact square_of_eq idp }}},
{ intro x, induction x with c b a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose pushout_const_equiv_from _ _ ⬝ ap02 _ !elim_glue ⬝ _,
refine !ap_con ⬝ !elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) }}
end
/- wedge is the cofiber of the map 2 -> A + B -/
-- move to sum
definition sum_of_bool [unfold 3] (A B : Type*) (b : bool) : A + B :=
by induction b; exact sum.inl pt; exact sum.inr pt
definition psum_of_pbool [constructor] (A B : Type*) : pbool →* (A +* B) :=
pmap.mk (sum_of_bool A B) idp
-- move to wedge
definition wedge_equiv_pushout_sum [constructor] (A B : Type*) :
wedge A B ≃ cofiber (sum_of_bool A B) :=
begin
refine pushout_const_equiv _ _ ⬝e _,
fapply pushout.equiv,
exact bool_equiv_unit_sum_unit⁻¹ᵉ,
reflexivity,
reflexivity,
intro x, induction x: reflexivity,
intro x, induction x with u u: induction u; reflexivity
end
section
open prod.ops
/- products preserve pushouts -/
definition pushout_prod_equiv_to [unfold 7] {A B C D : Type} {f : A → B} {g : A → C}
(xd : pushout f g × D) : pushout (prod_functor f (@id D)) (prod_functor g id) :=
begin
induction xd with x d, induction x with b c a,
{ exact inl (b, d) },
{ exact inr (c, d) },
{ exact glue (a, d) }
end
definition pushout_prod_equiv_from [unfold 7] {A B C D : Type} {f : A → B} {g : A → C}
(x : pushout (prod_functor f (@id D)) (prod_functor g id)) : pushout f g × D :=
begin
induction x with bd cd ad,
{ exact (inl bd.1, bd.2) },
{ exact (inr cd.1, cd.2) },
{ exact prod_eq (glue ad.1) idp }
end
definition pushout_prod_equiv {A B C D : Type} (f : A → B) (g : A → C) :
pushout f g × D ≃ pushout (prod_functor f (@id D)) (prod_functor g id) :=
begin
fapply equiv.MK,
{ exact pushout_prod_equiv_to },
{ exact pushout_prod_equiv_from },
{ intro x, induction x with bd cd ad,
{ induction bd, reflexivity },
{ induction cd, reflexivity },
{ induction ad with a d, apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose pushout_prod_equiv_to _ _ ⬝ ap02 _ !elim_glue ⬝ _, esimp,
exact !ap_prod_elim ⬝ !idp_con ⬝ !elim_glue }},
{ intro xd, induction xd with x d, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose (pushout_prod_equiv_from ∘ pushout_prod_equiv_to) _ _ ⬝ _,
refine ap02 _ !ap_prod_mk_left ⬝ !ap_compose ⬝ _,
refine ap02 _ (!ap_prod_elim ⬝ !idp_con ⬝ !elim_glue) ⬝ _,
refine !elim_glue ⬝ !ap_prod_mk_left⁻¹ }}
end
end
/- interaction of pushout and sums -/
definition pushout_to_sum [unfold 8] {A B C : Type} {f : A → B} {g : A → C} (D : Type) (c₀ : C)
(x : pushout f g) : pushout (sum_functor f (@id D)) (sum.rec g (λd, c₀)) :=
begin
induction x with b c a,
{ exact inl (sum.inl b) },
{ exact inr c },
{ exact glue (sum.inl a) }
end
definition pushout_from_sum [unfold 8] {A B C : Type} {f : A → B} {g : A → C} (D : Type) (c₀ : C)
(x : pushout (sum_functor f (@id D)) (sum.rec g (λd, c₀))) : pushout f g :=
begin
induction x with x c x,
{ induction x with b d, exact inl b, exact inr c₀ },
{ exact inr c },
{ induction x with a d, exact glue a, reflexivity }
end
/- The pushout of B <-- A --> C is the same as the pushout of B + D <-- A + D --> C -/
definition pushout_sum_cancel_equiv [constructor] {A B C : Type} (f : A → B) (g : A → C)
(D : Type) (c₀ : C) : pushout f g ≃ pushout (sum_functor f (@id D)) (sum.rec g (λd, c₀)) :=
begin
fapply equiv.MK,
{ exact pushout_to_sum D c₀ },
{ exact pushout_from_sum D c₀ },
{ intro x, induction x with x c x,
{ induction x with b d, reflexivity, esimp, exact (glue (sum.inr d))⁻¹ },
{ reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose (pushout_to_sum D c₀) _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction x with a d: esimp,
{ exact hdeg_square !elim_glue },
{ exact square_of_eq !con.left_inv }}},
{ intro x, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose (pushout_from_sum D c₀) _ _ ⬝ ap02 _ !elim_glue ⬝ !elim_glue }}
end
end pushout
namespace pushout
variables {A A' B B' C C' : Type} {f : A → B} {g : A → C} {f' : A' → B'} {g' : A' → C'}
definition sum_pushout_of_pushout_sum [unfold 11]
(x : pushout (sum_functor f f') (sum_functor g g')) : pushout f g ⊎ pushout f' g' :=
begin
induction x with b c a,
{ exact sum_functor inl inl b },
{ exact sum_functor inr inr c },
{ induction a with a a', exact ap sum.inl (glue a), exact ap sum.inr (glue a') }
end
definition pushout_sum_of_sum_pushout [unfold 11]
(x : pushout f g ⊎ pushout f' g') : pushout (sum_functor f f') (sum_functor g g') :=
begin
induction x with x x,
{ exact pushout.functor sum.inl sum.inl sum.inl homotopy.rfl homotopy.rfl x },
{ exact pushout.functor sum.inr sum.inr sum.inr homotopy.rfl homotopy.rfl x }
end
variables (f g f' g')
/-
do we want to define this in terms of sigma_pushout? One possible disadvantage is that the
computation on glue is less convenient
-/
definition pushout_sum_equiv_sum_pushout [constructor] :
pushout (sum_functor f f') (sum_functor g g') ≃ pushout f g ⊎ pushout f' g' :=
equiv.MK sum_pushout_of_pushout_sum pushout_sum_of_sum_pushout
abstract begin
intro x, induction x with x x,
{ induction x,
{ reflexivity },
{ reflexivity },
apply eq_pathover, apply hdeg_square, esimp,
exact ap_compose sum_pushout_of_pushout_sum _ _ ⬝
ap02 _ (!elim_glue ⬝ !con_idp ⬝ !idp_con) ⬝ !elim_glue },
{ induction x,
{ reflexivity },
{ reflexivity },
apply eq_pathover, apply hdeg_square, esimp,
exact ap_compose sum_pushout_of_pushout_sum _ _ ⬝
ap02 _ (!elim_glue ⬝ !con_idp ⬝ !idp_con) ⬝ !elim_glue },
end end
abstract begin
intro x, induction x with b c a,
{ induction b: reflexivity },
{ induction c: reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose pushout_sum_of_sum_pushout _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction a with a a':
(apply hdeg_square; refine !ap_compose'⁻¹ ⬝ !elim_glue ⬝ !con_idp ⬝ !idp_con) }
end end
variables {f g f' g'}
variables {D E F D' E' F' : Type} {h : D → E} {i : D → F} {h' : D' → E'} {i' : D' → F'}
{j : A → D} {k : B → E} {l : C → F} {j' : A' → D'} {k' : B' → E'} {l' : C' → F'}
{j₂ : A' → D} {k₂ : B' → E} {l₂ : C' → F}
(s : hsquare f h j k) (t : hsquare g i j l)
(s' : hsquare f' h' j' k') (t' : hsquare g' i' j' l')
(s₂ : hsquare f' h j₂ k₂) (t₂ : hsquare g' i j₂ l₂)
definition sum_rec_pushout_sum_equiv_sum_pushout :
sum.rec (pushout.functor j k l s t) (pushout.functor j₂ k₂ l₂ s₂ t₂) ∘
pushout_sum_equiv_sum_pushout f g f' g' ~
pushout.functor (sum.rec j j₂) (sum.rec k k₂) (sum.rec l l₂)
(sum_rec_hsquare s s₂) (sum_rec_hsquare t t₂) :=
begin
intro x, induction x with b c a,
{ induction b with b b': reflexivity },
{ induction c with c c': reflexivity },
{ exact abstract begin apply eq_pathover,
refine !ap_compose ⬝ ap02 _ !elim_glue ⬝ph _,
induction a with a a': exact hdeg_square (!ap_compose'⁻¹ ⬝ !elim_glue ⬝ !elim_glue⁻¹)
end end }
end
definition pushout_sum_equiv_sum_pushout_natural :
hsquare
(pushout.functor (j +→ j') (k +→ k') (l +→ l')
(sum_functor_hsquare s s') (sum_functor_hsquare t t'))
(pushout.functor j k l s t +→ pushout.functor j' k' l' s' t')
(pushout_sum_equiv_sum_pushout f g f' g')
(pushout_sum_equiv_sum_pushout h i h' i') :=
begin
intro x, induction x with b c a,
{ induction b with b b': reflexivity },
{ induction c with c c': reflexivity },
{ exact abstract begin apply eq_pathover,
refine !ap_compose ⬝ ap02 _ !elim_glue ⬝ph _ ⬝hp (!ap_compose ⬝ ap02 _ !elim_glue)⁻¹,
refine !ap_con ⬝ (!ap_con ⬝ !ap_compose'⁻¹ ◾ !elim_glue) ◾ (!ap_compose'⁻¹ ⬝ !ap_inv) ⬝ph _,
induction a with a a',
{ apply hdeg_square, refine !ap_compose'⁻¹ ◾ idp ◾ !ap_compose'⁻¹⁻² ⬝ _ ⬝ !ap_compose',
refine _ ⬝ (ap_compose sum.inl _ _ ⬝ ap02 _ !elim_glue)⁻¹,
exact (ap_compose sum.inl _ _ ◾ idp ⬝ !ap_con⁻¹) ◾ (!ap_inv⁻¹ ⬝ ap_compose sum.inl _ _) ⬝
!ap_con⁻¹ },
{ apply hdeg_square, refine !ap_compose'⁻¹ ◾ idp ◾ !ap_compose'⁻¹⁻² ⬝ _ ⬝ !ap_compose',
refine _ ⬝ (ap_compose sum.inr _ _ ⬝ ap02 _ !elim_glue)⁻¹,
exact (ap_compose sum.inr _ _ ◾ idp ⬝ !ap_con⁻¹) ◾ (!ap_inv⁻¹ ⬝ ap_compose sum.inr _ _) ⬝
!ap_con⁻¹ } end end }
end
end pushout
namespace pushout
open sigma sigma.ops
variables {X : Type} {A B C : X → Type} {f : Πx, A x → B x} {g : Πx, A x → C x}
definition sigma_pushout_of_pushout_sigma [unfold 7]
(x : pushout (total f) (total g)) : Σx, pushout (f x) (g x) :=
begin
induction x with b c a,
{ exact total (λx, inl) b },
{ exact total (λx, inr) c },
{ exact sigma_eq_right (glue a.2) }
end
definition pushout_sigma_of_sigma_pushout [unfold 7]
(x : Σx, pushout (f x) (g x)) : pushout (total f) (total g) :=
pushout.functor (dpair x.1) (dpair x.1) (dpair x.1) homotopy.rfl homotopy.rfl x.2
variables (f g)
definition pushout_sigma_equiv_sigma_pushout [constructor] :
pushout (total f) (total g) ≃ Σx, pushout (f x) (g x) :=
equiv.MK sigma_pushout_of_pushout_sigma pushout_sigma_of_sigma_pushout
abstract begin
intro x, induction x with x y, induction y with b c a,
{ reflexivity },
{ reflexivity },
{ apply eq_pathover, apply hdeg_square, esimp,
exact ap_compose sigma_pushout_of_pushout_sigma _ _ ⬝
ap02 _ (!elim_glue ⬝ !con_idp ⬝ !idp_con) ⬝ !elim_glue }
end end
abstract begin
intro x, induction x with b c a,
{ induction b, reflexivity },
{ induction c, reflexivity },
{ apply eq_pathover_id_right,
refine ap_compose pushout_sigma_of_sigma_pushout _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction a with a a',
apply hdeg_square, refine !ap_compose'⁻¹ ⬝ !elim_glue ⬝ !con_idp ⬝ !idp_con }
end end
variables {f g}
variables {X' : Type} {A' B' C' : X' → Type} {f' : Πx, A' x → B' x} {g' : Πx, A' x → C' x}
{s : X → X'} {h₁ : Πx, A x → A' (s x)} {h₂ : Πx, B x → B' (s x)} {h₃ : Πx, C x → C' (s x)}
(p : Πx, h₂ x ∘ f x ~ f' (s x) ∘ h₁ x) (q : Πx, h₃ x ∘ g x ~ g' (s x) ∘ h₁ x)
definition pushout_sigma_equiv_sigma_pushout_natural :
hsquare
(pushout.functor (sigma_functor s h₁) (sigma_functor s h₂) (sigma_functor s h₃)
(λa, sigma_eq_right (p a.1 a.2)) (λa, sigma_eq_right (q a.1 a.2)))
(sigma_functor s (λx, pushout.functor (h₁ x) (h₂ x) (h₃ x) (p x) (q x)))
(pushout_sigma_equiv_sigma_pushout f g) (pushout_sigma_equiv_sigma_pushout f' g') :=
begin
intro x, induction x with b c a,
{ reflexivity },
{ reflexivity },
{ exact abstract begin apply eq_pathover, apply hdeg_square,
refine !ap_compose ⬝ ap02 _ !elim_glue ⬝ !ap_con ⬝
(!ap_con ⬝ (!ap_compose'⁻¹ ⬝ !ap_compose'⁻¹) ◾ !elim_glue) ◾
(!ap_compose'⁻¹ ⬝ ap02 _ !ap_inv⁻¹ ⬝ !ap_compose'⁻¹) ⬝ _,
exact
(ap_compose (sigma_functor s (λ x, pushout.functor (h₁ x) (h₂ x) (h₃ x) (p x) (q x))) _ _ ⬝
ap02 _ !elim_glue ⬝ !ap_compose'⁻¹ ⬝ ap_compose (dpair _) _ _ ⬝ ap02 _ !elim_glue ⬝
!ap_con ⬝ (!ap_con ⬝ !ap_compose'⁻¹ ◾ idp) ◾ !ap_compose'⁻¹)⁻¹ end end }
end
/- an induction principle for the cofiber of f : A → B if A is a pushout where the second map has a section.
The Pgluer is modified to get the right coherence
See https://github.com/HoTT/HoTT-Agda/blob/master/theorems/homotopy/elims/CofPushoutSection.agda
-/
open sigma.ops
definition cofiber_pushout_helper' {A : Type} {B : A → Type} {a₀₀ a₀₂ a₂₀ a₂₂ : A} {p₀₁ : a₀₀ = a₀₂}
{p₁₀ : a₀₀ = a₂₀} {p₂₁ : a₂₀ = a₂₂} {p₁₂ : a₀₂ = a₂₂} {s : square p₀₁ p₂₁ p₁₀ p₁₂}
{b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₀₂ : B a₀₂} {b₂₂ b₂₂' : B a₂₂} {q₁₀ : b₀₀ =[p₁₀] b₂₀}
{q₀₁ : b₀₀ =[p₀₁] b₀₂} {q₂₁ : b₂₀ =[p₂₁] b₂₂'} {q₁₂ : b₀₂ =[p₁₂] b₂₂} :
Σ(r : b₂₂' = b₂₂), squareover B s q₀₁ (r ▸ q₂₁) q₁₀ q₁₂ :=
begin
induction s,
induction q₀₁ using idp_rec_on,
induction q₂₁ using idp_rec_on,
induction q₁₀ using idp_rec_on,
induction q₁₂ using idp_rec_on,
exact ⟨idp, idso⟩
end
definition cofiber_pushout_helper {A B C D : Type} {f : A → B} {g : A → C} {h : pushout f g → D}
{P : cofiber h → Type} {Pcod : Πd, P (cofiber.cod h d)} {Pbase : P (cofiber.base h)}
(Pgluel : Π(b : B), Pcod (h (inl b)) =[cofiber.glue (inl b)] Pbase)
(Pgluer : Π(c : C), Pcod (h (inr c)) =[cofiber.glue (inr c)] Pbase)
(a : A) : Σ(p : Pbase = Pbase), squareover P (natural_square cofiber.glue (glue a))
(Pgluel (f a)) (p ▸ Pgluer (g a))
(pathover_ap P (λa, cofiber.cod h (h a)) (apd (λa, Pcod (h a)) (glue a)))
(pathover_ap P (λa, cofiber.base h) (apd (λa, Pbase) (glue a))) :=
!cofiber_pushout_helper'
definition cofiber_pushout_rec {A B C D : Type} {f : A → B} {g : A → C} {h : pushout f g → D}
{P : cofiber h → Type} (Pcod : Πd, P (cofiber.cod h d)) (Pbase : P (cofiber.base h))
(Pgluel : Π(b : B), Pcod (h (inl b)) =[cofiber.glue (inl b)] Pbase)
(Pgluer : Π(c : C), Pcod (h (inr c)) =[cofiber.glue (inr c)] Pbase)
(r : C → A) (p : Πa, r (g a) = a)
(x : cofiber h) : P x :=
begin
induction x with d x,
{ exact Pcod d },
{ exact Pbase },
{ induction x with b c a,
{ exact Pgluel b },
{ exact (cofiber_pushout_helper Pgluel Pgluer (r c)).1 ▸ Pgluer c },
{ apply pathover_pathover, rewrite [p a], exact (cofiber_pushout_helper Pgluel Pgluer a).2 }}
end
/- universal property of cofiber -/
definition cofiber_exact_1 {X Y Z : Type*} (f : X →* Y) (g : pcofiber f →* Z) :
(g ∘* pcod f) ∘* f ~* pconst X Z :=
!passoc ⬝* pwhisker_left _ !pcod_pcompose ⬝* !pcompose_pconst
protected definition pcofiber.elim [constructor] {X Y Z : Type*} {f : X →* Y} (g : Y →* Z)
(p : g ∘* f ~* pconst X Z) : pcofiber f →* Z :=
begin
fapply pmap.mk,
{ intro w, induction w with y x, exact g y, exact pt, exact p x },
{ reflexivity }
end
protected definition pcofiber.elim_pcod {X Y Z : Type*} {f : X →* Y} {g : Y →* Z}
(p : g ∘* f ~* pconst X Z) : pcofiber.elim g p ∘* pcod f ~* g :=
begin
fapply phomotopy.mk,
{ intro y, reflexivity },
{ esimp, refine !idp_con ⬝ _,
refine _ ⬝ (!ap_con ⬝ (!ap_compose'⁻¹ ⬝ !ap_inv) ◾ !elim_glue)⁻¹,
apply eq_inv_con_of_con_eq, exact (to_homotopy_pt p)⁻¹ }
end
2018-08-19 11:52:20 +00:00
definition pcofiber_elim_unique {X Y Z : Type*} {f : X →* Y}
{g₁ g₂ : pcofiber f →* Z} (h : g₁ ∘* pcod f ~* g₂ ∘* pcod f)
(sq : Πx, square (h (f x)) (respect_pt g₁ ⬝ (respect_pt g₂)⁻¹)
(ap g₁ (cofiber.glue x)) (ap g₂ (cofiber.glue x))) : g₁ ~* g₂ :=
begin
fapply phomotopy.mk,
{ intro x, induction x with y x,
{ exact h y },
{ exact respect_pt g₁ ⬝ (respect_pt g₂)⁻¹ },
{ apply eq_pathover, exact sq x }},
{ apply inv_con_cancel_right }
end
/-
The maps Z^{C_f} --> Z^Y --> Z^X are exact at Z^Y.
Here Y^X means pointed maps from X to Y and C_f is the cofiber of f.
The maps are given by precomposing with (pcod f) and f.
-/
definition cofiber_exact {X Y Z : Type*} (f : X →* Y) :
is_exact_t (@ppcompose_right _ _ Z (pcod f)) (ppcompose_right f) :=
begin
constructor,
{ intro g, apply eq_of_phomotopy, apply cofiber_exact_1 },
{ intro g p, note q := phomotopy_of_eq p,
exact fiber.mk (pcofiber.elim g q) (eq_of_phomotopy (pcofiber.elim_pcod q)) }
end
/- cofiber of pcod is suspension -/
definition pcofiber_pcod {A B : Type*} (f : A →* B) : pcofiber (pcod f) ≃* susp A :=
begin
fapply pequiv_of_equiv,
{ refine !pushout.symm ⬝e _,
exact pushout_vcompose_equiv f equiv.rfl homotopy.rfl homotopy.rfl },
reflexivity
end
-- definition pushout_vcompose [constructor] {A B C D : Type} (f : A → B) (g : A → C) (h : B → D) :
-- pushout h (@inl _ _ _ f g) ≃ pushout (h ∘ f) g :=
-- definition pushout_hcompose {A B C D : Type} (f : A → B) (g : A → C) (h : C → D) :
-- pushout (@inr _ _ _ f g) h ≃ pushout f (h ∘ g) :=
-- definition pushout_vcompose_equiv {A B C D E : Type} (f : A → B) {g : A → C} {h : B → D}
-- {hf : A → D} {k : B → E} (e : E ≃ pushout f g) (p : k ~ e⁻¹ᵉ ∘ inl) (q : h ∘ f ~ hf) :
-- pushout h k ≃ pushout hf g :=
end pushout
namespace pushout
/- define the quotient using pushout -/
section
open quotient sigma.ops
variables {A B : Type} (R : A → A → Type) {Q : B → B → Type}
(f : A → B) (k : Πa a' : A, R a a' → Q (f a) (f a'))
definition pushout_quotient {A : Type} (R : A → A → Type) : Type :=
@pushout ((Σa a', R a a') ⊎ (Σa a', R a a')) A (Σa a', R a a')
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
variable {R}
definition pushout_quotient_of_quotient [unfold 3] (x : quotient R) : pushout_quotient R :=
begin
induction x with a a a' r,
{ exact inl a },
{ exact glue (sum.inl ⟨a, a', r⟩) ⬝ (glue (sum.inr ⟨a, a', r⟩))⁻¹ }
end
definition quotient_of_pushout_quotient [unfold 3] (x : pushout_quotient R) : quotient R :=
begin
induction x with a x x,
{ exact class_of R a },
{ exact class_of R x.2.1 },
{ induction x with x x, exact eq_of_rel R x.2.2, reflexivity }
end
variable (R)
definition quotient_equiv_pushout [constructor] : quotient R ≃ pushout_quotient R :=
equiv.MK pushout_quotient_of_quotient quotient_of_pushout_quotient
abstract begin
intro x, induction x with a x x,
{ reflexivity },
{ exact glue (sum.inr x) },
{ apply eq_pathover_id_right,
refine ap_compose pushout_quotient_of_quotient _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
induction x with x x,
{ refine !elim_eq_of_rel ⬝ph _, induction x with a x, induction x with a' r,
exact whisker_bl _ hrfl },
{ exact square_of_eq idp }}
end end
abstract begin
intro x, induction x,
{ reflexivity },
{ apply eq_pathover_id_right, apply hdeg_square,
refine ap_compose quotient_of_pushout_quotient _ _ ⬝ ap02 _ !elim_eq_of_rel ⬝ _,
exact !ap_con ⬝ !elim_glue ◾ (!ap_inv ⬝ !elim_glue⁻²) }
end end
variable {R}
definition sigma_functor2 [unfold 7] : (Σ a a', R a a') → (Σ b b', Q b b') :=
sigma_functor f (λa, sigma_functor f (k a))
definition pushout_quotient_functor [unfold 7] : pushout_quotient R → pushout_quotient Q :=
let tf := sigma_functor2 f k in
pushout.functor (sum_functor tf tf) f tf
begin intro x, induction x: reflexivity end begin intro x, induction x: reflexivity end
definition quotient_equiv_pushout_natural :
hsquare (quotient.functor _ _ f k) (pushout_quotient_functor f k)
(quotient_equiv_pushout R) (quotient_equiv_pushout Q) :=
begin
intro x, induction x with a a a' r,
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose pushout_quotient_of_quotient _ _ ⬝ _ ⬝
(ap_compose (pushout.functor _ _ _ _ _) _ _)⁻¹,
refine ap02 _ !elim_eq_of_rel ⬝ _ ⬝ (ap02 _ !elim_eq_of_rel)⁻¹,
refine !elim_eq_of_rel ⬝ _,
exact (!ap_con ⬝ (!pushout.elim_glue ⬝ !con_idp ⬝ !idp_con) ◾
(!ap_inv ⬝ (!pushout.elim_glue ⬝ !con_idp ⬝ !idp_con)⁻²))⁻¹ }
end
end
variables {A B : Type*}
open smash
definition prod_of_wedge [unfold 3] (v : wedge A B) : A × B :=
begin
induction v with a b ,
{ exact (a, pt) },
{ exact (pt, b) },
{ reflexivity }
end
definition wedge_of_sum [unfold 3] (v : A + B) : wedge A B :=
begin
induction v with a b,
{ exact pushout.inl a },
{ exact pushout.inr b }
end
definition prod_of_wedge_of_sum [unfold 3] (v : A + B) :
prod_of_wedge (wedge_of_sum v) = prod_of_sum v :=
begin
induction v with a b,
{ reflexivity },
{ reflexivity }
end
definition eq_inl_pushout_wedge_of_sum [unfold 3] (v : wedge A B) :
inl pt = inl v :> pushout wedge_of_sum bool_of_sum :=
begin
induction v with a b,
{ exact glue (sum.inl pt) ⬝ (glue (sum.inl a))⁻¹, },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) ⬝ (glue (sum.inr b))⁻¹, },
{ apply eq_pathover_constant_left,
refine !con.right_inv ⬝pv _ ⬝vp !con_inv_cancel_right⁻¹, exact square_of_eq idp }
end
variables (A B)
definition eq_inr_pushout_wedge_of_sum [unfold 3] (b : bool) :
inl pt = inr b :> pushout (@wedge_of_sum A B) bool_of_sum :=
begin
induction b,
{ exact glue (sum.inl pt) },
{ exact ap inl (glue ⋆) ⬝ glue (sum.inr pt) }
end
definition is_contr_pushout_wedge_of_sum : is_contr (pushout (@wedge_of_sum A B) bool_of_sum) :=
begin
apply is_contr.mk (pushout.inl pt),
intro x, induction x with v b w,
{ apply eq_inl_pushout_wedge_of_sum },
{ apply eq_inr_pushout_wedge_of_sum },
{ apply eq_pathover_constant_left_id_right,
induction w with a b,
{ apply whisker_rt, exact vrfl },
{ apply whisker_rt, exact vrfl }}
end
definition bool_of_sum_of_bool {A B : Type*} (b : bool) : bool_of_sum (sum_of_bool A B b) = b :=
by induction b: reflexivity
/- a different proof, using pushout lemmas, and the fact that the wedge is the pushout of
A + B <-- 2 --> 1 -/
definition pushout_wedge_of_sum_equiv_unit : pushout (@wedge_of_sum A B) bool_of_sum ≃ unit :=
begin
refine pushout_hcompose_equiv (sum_of_bool A B) (wedge_equiv_pushout_sum A B ⬝e !pushout.symm)
_ _ ⬝e _,
exact erfl,
intro x, induction x,
reflexivity, reflexivity,
exact bool_of_sum_of_bool,
apply pushout_of_equiv_right
end
end pushout
namespace pushout -- should this be wedge?
/- the wedge connectivity lemma actually works as intended -/
section
open trunc_index is_conn prod prod.ops
-- of course, the tricky part is coming up with the statement;
-- the proof is easy!
private definition tricky_lemma {A B : Type} (f : A → B) {a a' : A}
(p : a = a') (P : B → Type) {r : f a = f a'} (α : ap f p = r)
(s : Π x, P (f x)) (e : Π y, P y)
(q : e (f a) = s a) (q' : e (f a') = s a')
(H : (ap (transport P r) q)⁻¹ ⬝ (apdt e r ⬝ q')
= (tr_compose P f p (s a) ⬝ ap (λ u, transport P u (s a)) α)⁻¹ ⬝ apdt s p)
: q =[p] q' :=
begin
induction α, induction p, apply pathover_idp_of_eq, esimp, esimp at H,
rewrite ap_id at H, rewrite idp_con at H,
exact (eq_con_of_inv_con_eq H)⁻¹,
end
2018-01-30 21:11:13 +00:00
parameters (n m : ) {A B : Type*}
private definition section_of_glue (P : A × B → Type)
(s : Π w, P (prod_of_wedge w))
: (s (inl pt) = s (inr pt) :> P (pt, pt)) :=
((tr_compose P prod_of_wedge (glue star) (s (inl pt)))
⬝ (ap (λ q, transport P q (s (inl pt)))
(wedge.elim_glue (λ a, (a, pt)) (λ b, (pt, b)) idp)))⁻¹ ⬝ (apdt s (glue star))
2018-01-30 21:11:13 +00:00
parameters (A B)
parameters [cA : is_conn n A] [cB : is_conn m B]
include cA cB
definition is_conn_fun_prod_of_wedge : is_conn_fun (m + n) (@prod_of_wedge A B) :=
begin
apply is_conn.is_conn_fun.intro, intro P, fapply is_retraction.mk,
{ intros s z, induction z with a b,
exact @wedge_extension.ext A B n m cA cB (λ a b, P (a, b))
(λ a b, transport (λ k, is_trunc k (P (a, b))) (of_nat_add_of_nat m n)
(trunctype.struct (P (a, b))))
(λ a, s (inl a)) (λ b, s (inr b))
(section_of_glue P s) a b },
{ intro s, apply eq_of_homotopy, intro w, induction w with a b,
{ esimp, apply wedge_extension.β_left },
{ esimp, apply wedge_extension.β_right },
{ esimp, apply @tricky_lemma (wedge A B) (A × B)
(@prod_of_wedge A B) (inl pt) (inr pt) wedge.glue P idp
(wedge.elim_glue (λ a, (a, pt)) (λ b, (pt, b)) idp) s
(prod.rec (@wedge_extension.ext A B n m cA cB (λ a b, P (a, b))
(λ a b, transport (λ k, is_trunc k (P (a, b))) (of_nat_add_of_nat m n)
(trunctype.struct (P (a, b))))
(λ a, s (inl a)) (λ b, s (inr b)) (section_of_glue P s))),
esimp, rewrite [ap_id,idp_con], apply wedge_extension.coh } }
end
end
end pushout
namespace pushout
/- alternative version of the flattening lemma -/
-- should be moved to main library
section
open sigma sigma.ops
universe variables u₁ u₂ u₃ u₄
parameters {TL : Type.{u₁}} {BL : Type.{u₂}} {TR : Type.{u₃}}
(f : TL → BL) (g : TL → TR) (P : pushout f g → Type.{u₄})
local abbreviation F : sigma (λ x, P (inl (f x))) → sigma (P ∘ inl) :=
λ z, ⟨ f z.1 , z.2 ⟩
local abbreviation G : sigma (λ x, P (inl (f x))) → sigma (P ∘ inr) :=
λ z, ⟨ g z.1 , transport P (glue z.1) z.2 ⟩
local abbreviation Pglue : Π x, P (inl (f x)) ≃ P (inr (g x)) :=
λ x, equiv.mk (transport P (glue x)) (is_equiv_tr P (glue x))
protected definition flattening' : sigma P ≃ pushout F G :=
begin
assert H : Π w, P w ≃ pushout.elim_type (P ∘ inl) (P ∘ inr) Pglue w,
{ intro w, induction w with x x x,
{ exact erfl }, { exact erfl },
{ apply equiv_pathover, intro pfx pgx q,
apply pathover_of_tr_eq,
apply eq.trans (ap10 (elim_type_glue.{u₁ u₂ u₃ u₄}
(P ∘ inl) (P ∘ inr) Pglue x) pfx), -- why do we need explicit universes here?
exact tr_eq_of_pathover q } },
apply equiv.trans (sigma_equiv_sigma_right H),
exact pushout.flattening f g (P ∘ inl) (P ∘ inr) Pglue
end
end
end pushout