prove some lemmas about pushouts, and start on the formulation of the 3x3 lemma

This commit is contained in:
Floris van Doorn 2017-01-05 18:18:44 +01:00
parent 7f6752e14f
commit 6594be4292
3 changed files with 270 additions and 0 deletions

33
homotopy/3x3.hlean Normal file
View file

@ -0,0 +1,33 @@
import ..move_to_lib
open function eq
namespace pushout
section
-- structure span2 : Type :=
-- {A₀₀ A₀₂ A₀₄ A₂₀ A₂₂ A₂₄ A₄₀ A₄₂ A₄₄ : Type}
-- {f₀₁ : A₀₂ → A₀₀} {f₂₁ : A₂₂ → A₂₀} {f₄₁ : A₄₂ → A₄₀}
-- {f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
-- {f₁₀ : A₂₀ → A₀₀} {f₁₂ : A₂₂ → A₀₂} {f₁₄ : A₂₄ → A₀₄}
-- {f₃₀ : A₂₀ → A₄₀} {f₃₂ : A₂₂ → A₄₂} {f₃₄ : A₂₄ → A₄₄}
-- (s₁₁ : f₀₁ ∘ f₁₂ ~ f₁₀ ∘ f₂₁) (s₃₁ : f₄₁ ∘ f₃₂ ~ f₃₀ ∘ f₂₁)
-- (s₁₃ : f₀₃ ∘ f₁₂ ~ f₁₄ ∘ f₂₃) (s₃₃ : f₄₃ ∘ f₃₂ ~ f₃₄ ∘ f₂₃)
parameters {A₀₀ A₀₂ A₀₄ A₂₀ A₂₂ A₂₄ A₄₀ A₄₂ A₄₄ : Type}
{f₀₁ : A₀₂ → A₀₀} {f₂₁ : A₂₂ → A₂₀} {f₄₁ : A₄₂ → A₄₀}
{f₀₃ : A₀₂ → A₀₄} {f₂₃ : A₂₂ → A₂₄} {f₄₃ : A₄₂ → A₄₄}
{f₁₀ : A₂₀ → A₀₀} {f₁₂ : A₂₂ → A₀₂} {f₁₄ : A₂₄ → A₀₄}
{f₃₀ : A₂₀ → A₄₀} {f₃₂ : A₂₂ → A₄₂} {f₃₄ : A₂₄ → A₄₄}
(s₁₁ : f₀₁ ∘ f₁₂ ~ f₁₀ ∘ f₂₁) (s₃₁ : f₄₁ ∘ f₃₂ ~ f₃₀ ∘ f₂₁)
(s₁₃ : f₀₃ ∘ f₁₂ ~ f₁₄ ∘ f₂₃) (s₃₃ : f₄₃ ∘ f₃₂ ~ f₃₄ ∘ f₂₃)
definition pushout2 : Type :=
pushout (pushout.functor f₂₁ f₀₁ f₄₁ s₁₁ s₃₁) (pushout.functor f₂₃ f₀₃ f₄₃ s₁₃ s₃₃)
definition pushout2' : Type :=
pushout (pushout.functor f₁₂ f₁₀ f₁₄ s₁₁⁻¹ʰᵗʸ s₁₃⁻¹ʰᵗʸ) (pushout.functor f₃₂ f₃₀ f₃₄ s₃₁⁻¹ʰᵗʸ s₃₃⁻¹ʰᵗʸ)
end
end pushout

231
homotopy/pushout.hlean Normal file
View file

@ -0,0 +1,231 @@
import ..move_to_lib
open eq function is_trunc sigma prod sigma.ops lift is_equiv equiv
namespace pushout
universe variables u₁ u₂ u₃ u₄
variables {A : Type.{u₁}} {B : Type.{u₂}} {C : Type.{u₃}} {D D' : Type.{u₄}}
{f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g)
{h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g)
-- (f : A → B) (g : A → C) (h : B → D) (k : C → D)
include p
definition is_pushout : Type :=
Π⦃X : Type.{max u₁ u₂ u₃ u₄}⦄ (h' : B → X) (k' : C → X) (p' : h' ∘ f ~ k' ∘ g),
is_contr (Σ(l : D → X) (v : l ∘ h ~ h' × l ∘ k ~ k'),
Πa, square (prod.pr1 v (f a)) (prod.pr2 v (g a)) (ap l (p a)) (p' a))
definition cocone [reducible] (X : Type) : Type :=
Σ(v : (B → X) × (C → X)), prod.pr1 v ∘ f ~ prod.pr2 v ∘ g
definition cocone_of_map [constructor] (X : Type) (l : D → X) : cocone p X :=
⟨(l ∘ h, l ∘ k), λa, ap l (p a)⟩
-- definition cocone_of_map (X : Type) (l : D → X) : Σ(h' : B → X) (k' : C → X),
-- h' ∘ f ~ k' ∘ g :=
-- ⟨l ∘ h, l ∘ k, λa, ap l (p a)⟩
omit p
definition is_pushout2 [reducible] : Type :=
Π(X : Type.{max u₁ u₂ u₃ u₄}), is_equiv (cocone_of_map p X)
protected definition inv_left (H : is_pushout2 p) {X : Type} (v : cocone p X) :
(cocone_of_map p X)⁻¹ᶠ v ∘ h ~ prod.pr1 v.1 :=
ap10 (ap prod.pr1 (right_inv (cocone_of_map p X) v)..1)
protected definition inv_right (H : is_pushout2 p) {X : Type} (v : cocone p X) :
(cocone_of_map p X)⁻¹ᶠ v ∘ k ~ prod.pr2 v.1 :=
ap10 (ap prod.pr2 (right_inv (cocone_of_map p X) v)..1)
section
local attribute is_pushout [reducible]
definition is_prop_is_pushout : is_prop (is_pushout p) :=
_
local attribute is_pushout2 [reducible]
definition is_prop_is_pushout2 : is_prop (is_pushout2 p) :=
_
end
print ap_ap10
print apd10_ap
print apd10
print ap10
print apd10_ap_precompose_dependent
definition ap_eq_apd10_ap {A B : Type} {C : B → Type} (f : A → Πb, C b) {a a' : A} (p : a = a') (b : B)
: ap (λa, f a b) p = apd10 (ap f p) b :=
by induction p; reflexivity
variables (f g)
definition is_pushout2_pushout : @is_pushout2 _ _ _ _ f g inl inr glue :=
λX, to_is_equiv (pushout_arrow_equiv f g X ⬝e assoc_equiv_prod _)
-- set_option pp.implicit true
-- set_option pp.notation false
definition is_equiv_of_is_pushout2_simple [constructor] {A B C D : Type.{u₁}}
{f : A → B} {g : A → C} {h : B → D} {k : C → D} (p : h ∘ f ~ k ∘ g)
{h' : B → D'} {k' : C → D'} (p' : h' ∘ f ~ k' ∘ g)
(H : is_pushout2 p) : D ≃ pushout f g :=
begin
fapply equiv.MK,
{ exact (cocone_of_map p _)⁻¹ᶠ ⟨(inl, inr), glue⟩ },
{ exact pushout.elim h k p },
{ intro x, exact sorry
},
{ apply ap10,
apply eq_of_fn_eq_fn (equiv.mk _ (H D)),
fapply sigma_eq,
{ esimp, fapply prod_eq,
apply eq_of_homotopy, intro b,
exact ap (pushout.elim h k p) (pushout.inv_left p H ⟨(inl, inr), glue⟩ b),
apply eq_of_homotopy, intro c,
exact ap (pushout.elim h k p) (pushout.inv_right p H ⟨(inl, inr), glue⟩ c) },
{ apply pi.pi_pathover_constant, intro a,
apply eq_pathover,
refine !ap_eq_apd10_ap ⬝ph _ ⬝hp !ap_eq_apd10_ap⁻¹,
refine ap (λx, apd10 x _) (ap_compose (λx, x ∘ f) pr1 _ ⬝ ap02 _ !prod_eq_pr1) ⬝ph _
⬝hp ap (λx, apd10 x _) (ap_compose (λx, x ∘ g) pr2 _ ⬝ ap02 _ !prod_eq_pr2)⁻¹,
refine apd10 !apd10_ap_precompose_dependent a ⬝ph _ ⬝hp apd10 !apd10_ap_precompose_dependent⁻¹ a,
refine apd10 !apd10_eq_of_homotopy (f a) ⬝ph _ ⬝hp apd10 !apd10_eq_of_homotopy⁻¹ (g a),
refine ap_compose (pushout.elim h k p) _ _ ⬝pv _,
refine aps (pushout.elim h k p) _ ⬝vp (!elim_glue ⬝ !ap_id⁻¹),
esimp, exact sorry
},
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
}
end
definition is_equiv_of_is_pushout2 [constructor] (H : is_pushout2 p) : D ≃ pushout f g :=
begin
fapply equiv.MK,
{ exact down.{_ u₄} ∘ (cocone_of_map p _)⁻¹ᶠ ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ },
{ exact pushout.elim h k p },
{ intro x, exact sorry
},
{ intro d, apply eq_of_fn_eq_fn (equiv_lift D), esimp, revert d,
apply ap10,
apply eq_of_fn_eq_fn (equiv.mk _ (H (lift.{_ (max u₁ u₂ u₃)} D))),
fapply sigma_eq,
{ esimp, fapply prod_eq,
apply eq_of_homotopy, intro b, apply ap up, esimp,
exact ap (pushout.elim h k p ∘ down.{_ u₄})
(pushout.inv_left p H ⟨(up ∘ inl, up ∘ inr), λa, ap up (glue a)⟩ b),
exact sorry },
{ exact sorry },
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
}
end
-- definition is_equiv_of_is_pushout2 [constructor] (H : is_pushout2 p) : D ≃ pushout f g :=
-- begin
-- note H' := H (lift.{_ u₄} (pushout f g)),
-- note bla := equiv.mk _ H',
-- fapply equiv.MK,
-- { exact down ∘ (center' H').1 },
-- { exact pushout.elim h k p },
-- { intro x, induction x with b c a,
-- { exact ap down (prod.pr1 (center' H').2 b) },
-- { exact ap down (prod.pr2 (center' H').2 c) },
-- { apply eq_pathover_id_right,
-- refine ap_compose (down ∘ (center' H').1) _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
-- refine ap_compose down _ _ ⬝ph _ ⬝hp ((ap_compose' down up _)⁻¹ ⬝ !ap_id),
-- refine aps down _, }},
-- { intro d,
-- note H'' := H (up ∘ h) (up ∘ k) (λa, ap up.{_ (max u₁ u₂ u₃)} (p a)),
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
-- }
-- end
-- definition is_pushout_pushout : @is_pushout _ _ _ _ f g inl inr glue :=
-- begin
-- intro X h k p,
-- fapply is_contr.mk,
-- { refine ⟨pushout.elim h k p, (λb, idp, λc, idp), λa, hdeg_square (elim_glue h k p a)⟩ },
-- { intro v, induction v with l v, induction v with v s, induction v with q r,
-- fapply sigma_eq,
-- esimp, apply eq_of_homotopy, intro x, induction x with b c a,
-- { exact (q b)⁻¹ },
-- { exact (r c)⁻¹ },
-- { apply eq_pathover, exact !elim_glue ⬝ph (s a)⁻¹ʰ },
-- }
-- end
-- definition is_pushout_of_is_equiv (e : D ≃ pushout f g)
-- : is_pushout
-- variables {f g}
-- definition is_equiv_of_is_pushout [constructor] (H : is_pushout p) : D ≃ pushout f g :=
-- begin
-- note H' := H (up ∘ inl) (up ∘ inr) (λa, ap up.{_ u₄} (@glue _ _ _ f g a)),
-- fapply equiv.MK,
-- { exact down ∘ (center' H').1 },
-- { exact pushout.elim h k p },
-- { intro x, induction x with b c a,
-- { exact ap down (prod.pr1 (center' H').2 b) },
-- { exact ap down (prod.pr2 (center' H').2 c) },
-- { apply eq_pathover_id_right,
-- refine ap_compose (down ∘ (center' H').1) _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
-- refine ap_compose down _ _ ⬝ph _ ⬝hp ((ap_compose' down up _)⁻¹ ⬝ !ap_id),
-- refine aps down _, }},
-- { intro d,
-- note H'' := H (up ∘ h) (up ∘ k) (λa, ap up.{_ (max u₁ u₂ u₃)} (p a)),
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
-- }
-- end
-- set_option pp.universes true
-- set_option pp.abbreviations false
-- definition is_equiv_of_is_pushout [constructor] (H : is_pushout p) (H : is_pushout p') : D ≃ D' :=
-- begin
-- note H' := H (up ∘ inl) (up ∘ inr) (λa, ap up.{_ u₄} (@glue _ _ _ f g a)),
-- fapply equiv.MK,
-- { exact down ∘ (center' H').1 },
-- { exact pushout.elim h k p },
-- { intro x, induction x with b c a,
-- { exact ap down (prod.pr1 (center' H').2 b) },
-- { exact ap down (prod.pr2 (center' H').2 c) },
-- { -- apply eq_pathover_id_right,
-- -- refine ap_compose (center' H').1 _ _ ⬝ ap02 _ !elim_glue ⬝ph _,
-- exact sorry }},
-- { intro d,
-- note H'' := H (up ∘ h) (up ∘ k) (λa, ap up.{_ (max u₁ u₂ u₃)} (p a)),
-- note q := @eq_of_is_contr _ H''
-- ⟨up ∘ pushout.elim h k p ∘ down ∘ (center' H').1,
-- (λb, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr1 (center' H').2 b),
-- λc, ap (up ∘ pushout.elim h k p ∘ down) (prod.pr2 (center' H').2 c))⟩
-- ⟨up, (λx, idp, λx, idp)⟩,
-- exact ap down (ap10 q..1 d)
-- }
-- end
end pushout

View file

@ -409,6 +409,12 @@ namespace fiber
end fiber
namespace is_trunc
definition center' {A : Type} (H : is_contr A) : A := center A
end is_trunc
namespace is_conn
open unit trunc_index nat is_trunc pointed.ops