some cleanup

This commit is contained in:
Floris van Doorn 2015-12-10 21:17:29 -05:00
parent 3c9ca4b51c
commit 01e0d1897b
2 changed files with 28 additions and 126 deletions

View file

@ -66,9 +66,9 @@ namespace group
apply is_trunc_equiv_closed_rev, exact H
end
--local attribute Pointed_of_Group [coercion]
--definition pmap_of_homomorphism [constructor] (φ : G₁ →g G₂) : G₁ →* G₂ :=
--pmap.mk φ !respect_one
definition pmap_of_homomorphism [constructor] (φ : G₁ →g G₂)
: Pointed_of_Group G₁ →* Pointed_of_Group G₂ :=
pmap.mk φ !respect_one
definition homomorphism_eq (p : group_fun φ ~ group_fun φ') : φ = φ' :=
begin
@ -84,8 +84,6 @@ namespace group
definition homomorphism_id [constructor] (G : Group) : G →g G :=
homomorphism.mk id (λg h, idp)
infixr ` ∘g `:75 := homomorphism_compose
notation 1 := homomorphism_id _
@ -97,8 +95,8 @@ namespace group
attribute isomorphism.to_hom [coercion]
attribute isomorphism.is_equiv_to_hom [instance]
-- definition equiv_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ ≃ G₂ :=
-- equiv.mk φ sorry
definition equiv_of_isomorphism [constructor] (φ : G₁ ≃g G₂) : G₁ ≃ G₂ :=
equiv.mk φ _
definition to_ginv [constructor] (φ : G₁ ≃g G₂) : G₂ →g G₁ :=
homomorphism.mk φ⁻¹
@ -120,6 +118,7 @@ namespace group
postfix `⁻¹ᵍ`:(max + 1) := isomorphism.symm
infixl ` ⬝g `:75 := isomorphism.trans
-- TODO
-- definition Group_univalence (G₁ G₂ : Group) : (G₁ ≃g G₂) ≃ (G₁ = G₂) :=
-- begin
-- fapply equiv.MK,
@ -139,6 +138,7 @@ namespace group
(λG₁ G₂ φ, homomorphism_eq (λg, idp))
(λG₁ G₂ φ, homomorphism_eq (λg, idp))
-- TODO
-- definition category_group : category Group :=
-- category.mk precategory_group
-- begin

View file

@ -598,128 +598,28 @@ namespace group
end
/- Free Commutative Group of a set -/
namespace tensor_group
/- namespace tensor_group
variables {A B}
local abbreviation ι := @free_comm_group_inclusion
inductive tensor_rel : free_comm_group (hset_of_Group A ×t hset_of_Group B) → Type :=
| mul_left : Π(a₁ a₂ : A) (b : B), tensor_rel (ι (a₁, b) * ι (a₂, b) * (ι (a₁ * a₂, b))⁻¹)
| mul_right : Π(a : A) (b₁ b₂ : B), tensor_rel (ι (a, b₁) * ι (a, b₂) * (ι (a, b₁ * b₂))⁻¹)
inductive tensor_rel_type : free_comm_group (hset_of_Group A ×t hset_of_Group B) → Type :=
| mul_left : Π(a₁ a₂ : A) (b : B), tensor_rel_type (ι (a₁, b) * ι (a₂, b) * (ι (a₁ * a₂, b))⁻¹)
| mul_right : Π(a : A) (b₁ b₂ : B), tensor_rel_type (ι (a, b₁) * ι (a, b₂) * (ι (a, b₁ * b₂))⁻¹)
exit
open tensor_rel
local abbreviation R [reducible] := tensor_rel
attribute tensor_rel.rrefl [refl]
attribute tensor_rel.rtrans [trans]
open tensor_rel_type
definition tensor_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
local abbreviation FG := tensor_carrier
definition tensor_rel' (x : free_comm_group (hset_of_Group A ×t hset_of_Group B)) : hprop :=
∥ tensor_rel_type x ∥
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
begin constructor, intro s, apply tr, unfold R end
local attribute is_reflexive_R [instance]
variable {X}
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
{ exact rtrans IH₁ IH₂}
end
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
{ exact rtrans IH₁ IH₂}
end
theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) :=
begin
induction l with t l IH,
{ reflexivity},
{ rewrite [concat_cons], transitivity (t :: s :: l),
{ exact resp_append !rflip !rrefl},
{ exact resp_append (rrefl [t]) IH}}
end
definition tensor_one [constructor] : FG X := class_of []
definition tensor_inv [unfold 3] : FG X → FG X :=
quotient_unary_map (reverse ∘ map sum.flip)
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
definition tensor_mul [unfold 3 4] : FG X → FG X → FG X :=
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
section
local notation 1 := tensor_one
local postfix ⁻¹ := tensor_inv
local infix * := tensor_mul
theorem tensor_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
begin
refine set_quotient.rec_hprop _ g₁,
refine set_quotient.rec_hprop _ g₂,
refine set_quotient.rec_hprop _ g₃,
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
exact ap class_of !append.assoc
end
theorem tensor_one_mul (g : FG X) : 1 * g = g :=
begin
refine set_quotient.rec_hprop _ g, clear g, intro g,
exact ap class_of !append_nil_left
end
theorem tensor_mul_one (g : FG X) : g * 1 = g :=
begin
refine set_quotient.rec_hprop _ g, clear g, intro g,
exact ap class_of !append_nil_right
end
theorem tensor_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
begin
refine set_quotient.rec_hprop _ g, clear g, intro g,
apply eq_of_rel, apply tr,
induction g with s l IH,
{ reflexivity},
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
refine rtrans _ IH,
apply resp_append, reflexivity,
change R X ([flip s, s] ++ l) ([] ++ l),
apply resp_append,
induction s, apply cancel2, apply cancel1,
reflexivity}
end
theorem tensor_mul_comm (g h : FG X) : g * h = h * g :=
begin
refine set_quotient.rec_hprop _ g, clear g, intro g,
refine set_quotient.rec_hprop _ h, clear h, intro h,
apply eq_of_rel, apply tr,
revert h, induction g with s l IH: intro h,
{ rewrite [append_nil_left, append_nil_right]},
{ rewrite [append_cons,-concat_append],
transitivity concat s (l ++ h), apply rel_cons_concat,
rewrite [-append_concat], apply IH}
end
end
end tensor_group open tensor_group
variables (X)
definition group_tensor_group [constructor] : comm_group (tensor_carrier X) :=
comm_group.mk tensor_mul _ tensor_mul_assoc tensor_one tensor_one_mul tensor_mul_one
tensor_inv tensor_mul_left_inv tensor_mul_comm
definition tensor_group_rel (A B : CommGroup)
: normal_subgroup_rel (free_comm_group (hset_of_Group A ×t hset_of_Group B)) :=
sorry /- relation generated by tensor_rel'-/
definition tensor_group [constructor] : CommGroup :=
CommGroup.mk _ (group_tensor_group X)
quotient_comm_group (tensor_group_rel A B)
end tensor_group-/
section kernels
@ -728,7 +628,7 @@ exit
-- TODO: maybe define this in more generality for pointed types?
definition kernel [constructor] (φ : G₁ →g G₂) (g : G₁) : hprop := trunctype.mk (φ g = 1) _
definition kernel_mul (φ : G₁ →g G₂) (g h : G₁) (H₁ : kernel φ g) (H₂ : kernel φ h) : kernel φ (g *[G₁] h) :=
theorem kernel_mul (φ : G₁ →g G₂) (g h : G₁) (H₁ : kernel φ g) (H₂ : kernel φ h) : kernel φ (g *[G₁] h) :=
begin
esimp at *,
exact calc
@ -738,7 +638,7 @@ exit
... = 1 : one_mul
end
definition kernel_inv (φ : G₁ →g G₂) (g : G₁) (H : kernel φ g) : kernel φ (g⁻¹) :=
theorem kernel_inv (φ : G₁ →g G₂) (g : G₁) (H : kernel φ g) : kernel φ (g⁻¹) :=
begin
esimp at *,
exact calc
@ -747,7 +647,7 @@ exit
... = 1 : one_inv
end
definition kernel_subgroup (φ : G₁ →g G₂) : subgroup_rel G₁ :=
definition kernel_subgroup [constructor] (φ : G₁ →g G₂) : subgroup_rel G₁ :=
⦃ subgroup_rel,
R := kernel φ,
Rone := respect_one φ,
@ -755,7 +655,8 @@ exit
Rinv := kernel_inv φ
definition kernel_subgroup_isnormal (φ : G₁ →g G₂) (g : G₁) (h : G₁) : kernel φ g → kernel φ (h * g * h⁻¹) :=
theorem kernel_subgroup_isnormal (φ : G₁ →g G₂) (g : G₁) (h : G₁)
: kernel φ g → kernel φ (h * g * h⁻¹) :=
begin
esimp at *,
intro p,
@ -768,11 +669,12 @@ exit
... = 1 : mul.right_inv
end
definition kernel_normal_subgroup (φ : G₁ →g G₂) : normal_subgroup_rel G₁ :=
definition kernel_normal_subgroup [constructor] (φ : G₁ →g G₂) : normal_subgroup_rel G₁ :=
⦃ normal_subgroup_rel,
kernel_subgroup φ,
is_normal := kernel_subgroup_isnormal φ
end kernels
end group