This commit is contained in:
Egbert Rijke 2017-04-07 13:14:51 -04:00
parent 4c713e921d
commit 024f8f740e

View file

@ -113,13 +113,26 @@ parameters {A B C : AbGroup} (ses : SES A B C)
local abbreviation q := ab_qg_map (kernel_subgroup g)
local abbreviation B_mod_A := quotient_ab_group (kernel_subgroup g)
--definition quotient_SES {A B C : AbGroup} (ses : SES A B C) :
-- quotient_ab_group (image_subgroup (SES.f ses)) ≃g C :=
-- begin
-- fapply ab_group_first_iso_thm B C (SES.g ses),
-- end
-- definition pre_right_extend_SES (to separate the following definition and replace C with B/A)
definition SES_of_triangle_left {A' : AbGroup} (α : A' ≃g A) (f' : A' →g B) (H : Π a' : A', f (α a') = f' a') : SES A' B C :=
begin
fapply SES.mk,
exact f',
exact g,
fapply is_embedding_of_is_injective,
intro x y p,
fapply eq_of_fn_eq_fn (equiv_of_isomorphism α),
fapply @is_injective_of_is_embedding _ _ f (SES.Hf ses) (α x) (α y),
rewrite [H x], rewrite [H y], exact p,
exact SES.Hg ses,
fapply is_exact.mk,
intro a',
rewrite [(H a')⁻¹],
fapply is_exact.im_in_ker (SES.ex ses),
intro b p,
have t : trunctype.carrier (subgroup_to_rel (image_subgroup f) b), from is_exact.ker_in_im (SES.ex ses) b p,
induction t, fapply tr, induction a with a q, fapply fiber.mk, exact α⁻¹ᵍ a, rewrite [(H (α⁻¹ᵍ a))⁻¹],
krewrite [right_inv (equiv_of_isomorphism α) a], assumption
end
definition quotient_codomain_SES : B_mod_A ≃g C :=
begin