prove the Freudenthal Suspension Theorem

This commit is contained in:
Floris van Doorn 2016-03-03 17:24:34 -05:00
parent a76e4fce08
commit 0483966328
3 changed files with 259 additions and 102 deletions

View file

@ -1,6 +1,7 @@
import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join import .LES_of_homotopy_groups homotopy.connectedness homotopy.homotopy_group homotopy.join
open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra open eq is_trunc pointed homotopy is_equiv fiber equiv trunc nat chain_complex prod fin algebra
group trunc_index function join pushout group trunc_index function join pushout
namespace nat namespace nat
open sigma sum open sigma sum
definition eq_even_or_eq_odd (n : ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) := definition eq_even_or_eq_odd (n : ) : (Σk, 2 * k = n) ⊎ (Σk, 2 * k + 1 = n) :=
@ -25,61 +26,6 @@ open nat
namespace is_conn namespace is_conn
theorem is_contr_HG_fiber_of_is_connected {A B : Type*} (k n : ) (f : A →* B)
[H : is_conn_map n f] (H2 : k ≤ n) : is_contr (π[k] (pfiber f)) :=
@(trivial_homotopy_group_of_is_conn (pfiber f) H2) (H pt)
-- TODO: use this for trivial_homotopy_group_of_is_conn (in homotopy.homotopy_group)
theorem is_conn_of_le (A : Type) {n k : ℕ₋₂} (H : n ≤ k) [is_conn k A] : is_conn n A :=
begin
apply is_contr_equiv_closed,
apply trunc_trunc_equiv_left _ n k H
end
definition zero_le_of_nat (n : ) : 0 ≤[ℕ₋₂] n :=
of_nat_le_of_nat (zero_le n)
local attribute is_conn_map [reducible] --TODO
theorem is_conn_map_of_le {A B : Type} (f : A → B) {n k : ℕ₋₂} (H : n ≤ k)
[is_conn_map k f] : is_conn_map n f :=
λb, is_conn_of_le _ H
definition is_surjective_trunc_functor {A B : Type} (n : ℕ₋₂) (f : A → B) [H : is_surjective f]
: is_surjective (trunc_functor n f) :=
begin
cases n with n: intro b,
{ exact tr (fiber.mk !center !is_prop.elim)},
{ refine @trunc.rec _ _ _ _ _ b, {intro x, exact is_trunc_of_le _ !minus_one_le_succ},
clear b, intro b, induction H b with v, induction v with a p,
exact tr (fiber.mk (tr a) (ap tr p))}
end
definition is_surjective_cancel_right {A B C : Type} (g : B → C) (f : A → B)
[H : is_surjective (g ∘ f)] : is_surjective g :=
begin
intro c,
induction H c with v, induction v with a p,
exact tr (fiber.mk (f a) p)
end
-- Lemma 7.5.14
theorem is_equiv_trunc_functor_of_is_conn_map {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_map n f] : is_equiv (trunc_functor n f) :=
begin
fapply adjointify,
{ intro b, induction b with b, exact trunc_functor n point (center (trunc n (fiber f b)))},
{ intro b, induction b with b, esimp, generalize center (trunc n (fiber f b)), intro v,
induction v with v, induction v with a p, esimp, exact ap tr p},
{ intro a, induction a with a, esimp, rewrite [center_eq (tr (fiber.mk a idp))]}
end
theorem trunc_equiv_trunc_of_is_conn_map {A B : Type} (n : ℕ₋₂) (f : A → B)
[H : is_conn_map n f] : trunc n A ≃ trunc n B :=
equiv.mk (trunc_functor n f) (is_equiv_trunc_functor_of_is_conn_map n f)
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
local attribute comm_group.to_group [coercion] local attribute comm_group.to_group [coercion]
local attribute is_equiv_tinverse [instance] local attribute is_equiv_tinverse [instance]
@ -124,20 +70,20 @@ namespace is_conn
[H : is_conn_map n f] : is_surjective (π→[n + 1] f) := [H : is_conn_map n f] : is_surjective (π→[n + 1] f) :=
begin begin
induction n using rec_on_even_odd with n, induction n using rec_on_even_odd with n,
{ cases n with n, { have H3 : is_surjective (π→*[2*n + 1] f ∘* tinverse), from
{ exact sorry}, @is_surjective_of_trivial _
{ have H3 : is_surjective (π→*[2*(succ n) + 1] f ∘* tinverse), from (LES_of_homotopy_groups3 f) _
@is_surjective_of_trivial _ (is_exact_LES_of_homotopy_groups3 f (n, 2))
(LES_of_homotopy_groups3 f) _ (@is_contr_HG_fiber_of_is_connected A B (2 * n) (2 * n) f H !le.refl),
(is_exact_LES_of_homotopy_groups3 f (succ n, 2)) exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*n + 1] f)) tinverse) H3},
(@is_contr_HG_fiber_of_is_connected A B (2 * succ n) (2 * succ n) f H !le.refl),
exact @(is_surjective_cancel_right (pmap.to_fun (π→*[2*(succ n) + 1] f)) tinverse) H3}},
{ exact @is_surjective_of_trivial _ { exact @is_surjective_of_trivial _
(LES_of_homotopy_groups3 f) _ (LES_of_homotopy_groups3 f) _
(is_exact_LES_of_homotopy_groups3 f (k, 5)) (is_exact_LES_of_homotopy_groups3 f (k, 5))
(@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)} (@is_contr_HG_fiber_of_is_connected A B (2 * k + 1) (2 * k + 1) f H !le.refl)}
end end
/- joins -/
definition join_empty_right [constructor] (A : Type) : join A empty ≃ A := definition join_empty_right [constructor] (A : Type) : join A empty ≃ A :=
begin begin
fapply equiv.MK, fapply equiv.MK,
@ -153,8 +99,6 @@ namespace is_conn
{ exact empty.elim (pr2 v)}} { exact empty.elim (pr2 v)}}
end end
/- joins -/
definition join_functor [unfold 7] {A A' B B' : Type} (f : A → A') (g : B → B') : definition join_functor [unfold 7] {A A' B B' : Type} (f : A → A') (g : B → B') :
join A B → join A' B' := join A B → join A' B' :=
begin begin

View file

@ -495,7 +495,6 @@ namespace chain_complex
pt_mul := one_mul, pt_mul := one_mul,
mul_pt := mul_one, mul_pt := mul_one,
mul_left_inv_pt := mul.left_inv⦄ mul_left_inv_pt := mul.left_inv⦄
end end
-- the following theorems would also be true of the replace "is_contr" by "is_prop" -- the following theorems would also be true of the replace "is_contr" by "is_prop"

View file

@ -1,45 +1,259 @@
-- TODO: in wedge connectivity and is_conn.elim, unbundle P
import homotopy.wedge types.pi .LES_applications --TODO: remove
import homotopy.wedge types.pi open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
open eq homotopy is_trunc pointed susp nat pi equiv is_equiv trunc definition iterated_loop_ptrunc_pequiv_con (n : ℕ₋₂) (k : ) (A : Type*)
(p q : Ω[k](ptrunc (n+k) (Ω A))) :
section freudenthal iterated_loop_ptrunc_pequiv n k (Ω A) (loop_mul trunc_concat p q) =
trunc_functor2 (loop_mul concat) (iterated_loop_ptrunc_pequiv n k (Ω A) p)
parameters {A : Type*} (n : ) [is_conn n A] (iterated_loop_ptrunc_pequiv n k (Ω A) q) :=
--set_option pp.notation false
protected definition my_wedge_extension.ext : Π {A : Type*} {B : Type*} (n m : ) [cA : is_conn n (carrier A)] [cB : is_conn m (carrier B)]
(P : carrier A → carrier B → (m+n)-Type) (f : Π (a : carrier A), trunctype.carrier (P a (Point B)))
(g : Π (b : carrier B), trunctype.carrier (P (Point A) b)),
f (Point A) = g (Point B) → (Π (a : carrier A) (b : carrier B), trunctype.carrier (P a b)) :=
sorry
definition code_fun (a : A) (q : north = north :> susp A)
: trunc (n * 2) (fiber (pmap.to_fun (loop_susp_unit A)) q) → trunc (n * 2) (fiber merid (q ⬝ merid a)) :=
begin
intro x, induction x with x,
esimp at *, cases x with a' p,
-- apply my_wedge_extension.ext n n,
exact sorry
end
definition code (y : susp A) : north = y → Type :=
susp.rec_on y
(λp, trunc (2*n) (fiber (loop_susp_unit A) p))
(λq, trunc (2*n) (fiber merid q))
begin begin
intros, revert n p q, induction k with k IH: intro n p q,
apply arrow_pathover_constant_right, { reflexivity},
intro q, rewrite [transport_eq_r], { exact sorry}
apply ua,
exact sorry
end end
definition freudenthal_suspension : is_conn_map (n*2) (loop_susp_unit A) := theorem elim_type_merid_inv {A : Type} (PN : Type) (PS : Type) (Pm : A → PN ≃ PS)
sorry (a : A) : transport (susp.elim_type PN PS Pm) (merid a)⁻¹ = to_inv (Pm a) :=
by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,ap_inv,elim_merid]; apply cast_ua_inv_fn
definition is_conn_trunc (A : Type) (n k : ℕ₋₂) [H : is_conn n A]
: is_conn n (trunc k A) :=
begin
apply is_trunc_equiv_closed, apply trunc_trunc_equiv_trunc_trunc
end
section open sphere sphere.ops
definition psphere_succ [unfold_full] (n : ) : S. (n + 1) = psusp (S. n) := idp
end
end freudenthal namespace freudenthal section
parameters {A : Type*} {n : } [is_conn n A]
--porting from Agda
-- definition Q (x : susp A) : Type :=
-- trunc (k) (north = x)
definition up (a : A) : north = north :> susp A := -- up a = loop_susp_unit A a
merid a ⬝ (merid pt)⁻¹
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
begin
have is_conn n (ptrunc (n + n) A), from !is_conn_trunc,
refine wedge_extension.ext n n (λ x y, ttrunc (n + n) A) _ _ _,
{ exact tr},
{ exact id},
{ reflexivity}
end
definition code_merid_β_left (a : A) : code_merid a pt = tr a :=
by apply wedge_extension.β_left
definition code_merid_β_right (b : ptrunc (n + n) A) : code_merid pt b = b :=
by apply wedge_extension.β_right
definition code_merid_coh : code_merid_β_left pt = code_merid_β_right pt :=
begin
symmetry, apply eq_of_inv_con_eq_idp, apply wedge_extension.coh
end
definition is_equiv_code_merid (a : A) : is_equiv (code_merid a) :=
begin
refine @is_conn.elim (n.-1) _ _ _ _ a,
{ intro a, apply is_trunc_of_le, apply minus_one_le_succ},
{ esimp, exact homotopy_closed id (homotopy.symm (code_merid_β_right))}
end
definition code_merid_equiv [constructor] (a : A) : trunc (n + n) A ≃ trunc (n + n) A :=
equiv.mk _ (is_equiv_code_merid a)
definition code_merid_inv_pt (x : trunc (n + n) A) : (code_merid_equiv pt)⁻¹ x = x :=
begin
refine ap010 @(is_equiv.inv _) _ x ⬝ _,
{ exact homotopy_closed id (homotopy.symm code_merid_β_right)},
{ apply is_conn.elim_β},
{ reflexivity}
end
definition code [unfold 4] : susp A → Type :=
susp.elim_type (trunc (n + n) A) (trunc (n + n) A) code_merid_equiv
definition is_trunc_code (x : susp A) : is_trunc (n + n) (code x) :=
begin
induction x with a: esimp,
{ exact _},
{ exact _},
{ apply is_prop.elimo}
end
local attribute is_trunc_code [instance]
definition decode_north [unfold 4] : code north → trunc (n + n) (north = north :> susp A) :=
trunc_functor (n + n) up
definition decode_north_pt : decode_north (tr pt) = tr idp :=
ap tr !con.right_inv
definition decode_south [unfold 4] : code south → trunc (n + n) (north = south :> susp A) :=
trunc_functor (n + n) merid
definition encode' {x : susp A} (p : north = x) : code x :=
transport code p (tr pt)
definition encode [unfold 5] {x : susp A} (p : trunc (n + n) (north = x)) : code x :=
begin
induction p with p,
exact transport code p (tr pt)
end
theorem encode_decode_north (c : code north) : encode (decode_north c) = c :=
begin
have H : Πc, is_trunc (n + n) (encode (decode_north c) = c), from _,
esimp at *,
induction c with a,
rewrite [↑[encode, decode_north, up, code], con_tr, elim_type_merid, ▸*,
code_merid_β_left, elim_type_merid_inv, ▸*, code_merid_inv_pt]
end
definition decode_coh_f (a : A) : tr (up pt) =[merid a] decode_south (code_merid a (tr pt)) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_left a)⁻¹,
apply trunc_pathover,
apply eq_pathover,
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹,
apply square_of_eq,
exact whisker_right !con.right_inv (merid a)
end
definition decode_coh_g (a' : A) : tr (up a') =[merid pt] decode_south (code_merid pt (tr a')) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_right (tr a'))⁻¹,
apply trunc_pathover,
apply eq_pathover,
refine !ap_constant ⬝ph _ ⬝hp !ap_id⁻¹,
apply square_of_eq, refine !inv_con_cancel_right ⬝ !idp_con⁻¹
end
definition decode_coh_equality {A : Type} {a a' : A} (p : a = a')
: whisker_right (con.right_inv p) p = inv_con_cancel_right p p ⬝ (idp_con p)⁻¹ :=
by induction p; reflexivity
theorem decode_coh (a : A) : decode_north =[merid a] decode_south :=
begin
apply arrow_pathover_left, intro c, esimp at *,
induction c with a',
rewrite [↑code, elim_type_merid, ▸*],
refine wedge_extension.ext n n _ _ _ _ a a',
{ exact _},
{ exact decode_coh_f},
{ exact decode_coh_g},
{ clear a a', unfold [decode_coh_f, decode_coh_g], refine ap011 concato_eq _ _,
{ apply ap (λp, trunc_pathover (eq_pathover (_ ⬝ph square_of_eq p ⬝hp _))),
apply decode_coh_equality},
{ apply ap (λp, ap decode_south p⁻¹), apply code_merid_coh}}
end
definition decode [unfold 4] {x : susp A} (c : code x) : trunc (n + n) (north = x) :=
begin
induction x with a,
{ exact decode_north c},
{ exact decode_south c},
{ exact decode_coh a}
end
theorem decode_encode {x : susp A} (p : trunc (n + n) (north = x)) : decode (encode p) = p :=
begin
induction p with p, induction p, esimp, apply decode_north_pt
end
parameters (A n)
definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) :=
equiv.MK decode_north encode decode_encode encode_decode_north
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
pequiv_of_equiv equiv' decode_north_pt
-- can we get this?
-- definition freudenthal_suspension : is_conn_map (n+n) (loop_susp_unit A) :=
-- begin
-- intro p, esimp at *, fapply is_contr.mk,
-- { note c := encode (tr p), esimp at *, induction c with a, },
-- { exact sorry}
-- end
-- {- Used to prove stability in iterated suspensions -}
-- module FreudenthalIso
-- {i} (n : ℕ₋₂) (k : ) (t : k ≠ O) (kle : ⟨ k ⟩ ≤T S (n +2+ S n))
-- (X : Ptd i) (cX : is-connected (S (S n)) (fst X)) where
-- open FreudenthalEquiv n (⟨ k ⟩) kle (fst X) (snd X) cX public
-- hom : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- →ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- hom = record {
-- f = fst F;
-- pres-comp = ap^-conc^ k t (decodeN , decodeN-pt) }
-- where F = ap^ k (decodeN , decodeN-pt)
-- iso : Ω^-Group k t (⊙Trunc ⟨ k ⟩ X) Trunc-level
-- ≃ᴳ Ω^-Group k t (⊙Trunc ⟨ k ⟩ (⊙Ω (⊙Susp X))) Trunc-level
-- iso = (hom , is-equiv-ap^ k (decodeN , decodeN-pt) (snd eq))
end end freudenthal
open algebra
definition freudenthal_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n)
: ptrunc k A ≃* ptrunc k (Ω (psusp A)) :=
have H' : k ≤[ℕ₋₂] n + n,
by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H,
ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n)
definition freudenthal_equiv {A : Type*} {n k : } [is_conn n A] (H : k ≤ 2 * n)
: trunc k A ≃ trunc k (Ω (psusp A)) :=
freudenthal_pequiv A H
namespace sphere
open ops algebra pointed function
definition stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) : π*[k + 1] (S. (n+1)) ≃* π*[k] (S. n) :=
begin
have H' : k ≤ 2 * pred n,
begin
rewrite [mul_pred_right], change pred (pred (k + 2)) ≤ pred (pred (2 * n)),
apply pred_le_pred, apply pred_le_pred, exact H
end,
have is_conn (of_nat (pred n)) (S. n),
begin
cases n with n,
{ exfalso, exact not_succ_le_zero _ H},
{ esimp, apply is_conn_psphere}
end,
refine pequiv_of_eq (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) ⬝e* _,
rewrite psphere_succ,
refine !phomotopy_group_pequiv_loop_ptrunc ⬝e* _,
refine loopn_pequiv_loopn k (freudenthal_pequiv _ H')⁻¹ᵉ* ⬝e* _,
exact !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
end
print phomotopy_group_pequiv_loop_ptrunc
print iterated_loop_ptrunc_pequiv
definition to_fun_stability_pequiv (k n : ) (H : k + 2 ≤ 2 * n) --(p : π*[k + 1] (S. (n+1)))
: stability_pequiv k n H = _ ∘ _ ∘ cast (ap (ptrunc 0) (loop_space_succ_eq_in (S. (n+1)) k)) :=
sorry
-- definition stability (k n : ) (H : k + 3 ≤ 2 * n) : πg[k+1 +1] (S. (n+1)) = πg[k+1] (S. n) :=
-- begin
-- fapply Group_eq,
-- { refine equiv_of_pequiv (stability_pequiv _ _ _), rewrite succ_add, exact H},
-- { intro g h, esimp, }
-- end
end sphere
/-
changes in book:
proof 8.6.15: also mention that we ignore multiplication
proof 8.4.4: respects points
proof 8.4.8: do k=0 separately
-/