cohomology: define cohomology as abelian groups and define the functorial action

This commit is contained in:
Floris van Doorn 2016-09-28 10:33:21 -04:00
parent 038bbb8be3
commit 0a15d184b2
3 changed files with 110 additions and 6 deletions

60
algebra/arrow_group.hlean Normal file
View file

@ -0,0 +1,60 @@
import algebra.group_theory ..move_to_lib
open pi pointed algebra group eq equiv is_trunc
namespace group
/- Group of functions whose codomain is a group -/
definition group_arrow [instance] (A B : Type) [group B] : group (A → B) :=
begin
fapply group.mk,
{ intro f g a, exact f a * g a },
{ apply is_trunc_arrow },
{ intros, apply eq_of_homotopy, intro a, apply mul.assoc },
{ intro a, exact 1 },
{ intros, apply eq_of_homotopy, intro a, apply one_mul },
{ intros, apply eq_of_homotopy, intro a, apply mul_one },
{ intro f a, exact (f a)⁻¹ },
{ intros, apply eq_of_homotopy, intro a, apply mul.left_inv }
end
definition Group_arrow (A : Type) (G : Group) : Group :=
Group.mk (A → G) _
definition comm_group_arrow [instance] (A B : Type) [comm_group B] : comm_group (A → B) :=
⦃comm_group, group_arrow A B,
mul_comm := by intros; apply eq_of_homotopy; intro a; apply mul.comm⦄
definition CommGroup_arrow (A : Type) (G : CommGroup) : CommGroup :=
CommGroup.mk (A → G) _
definition pgroup_ppmap [instance] (A B : Type*) [pgroup B] : pgroup (ppmap A B) :=
begin
fapply pgroup.mk,
{ intro f g, apply pmap.mk (λa, f a * g a),
exact ap011 mul (respect_pt f) (respect_pt g) ⬝ !one_mul },
{ apply is_trunc_pmap },
{ intros, apply pmap_eq_of_homotopy, intro a, apply mul.assoc },
{ intro f, apply pmap.mk (λa, (f a)⁻¹), apply inv_eq_one, apply respect_pt },
{ intros, apply pmap_eq_of_homotopy, intro a, apply one_mul },
{ intros, apply pmap_eq_of_homotopy, intro a, apply mul_one },
{ intros, apply pmap_eq_of_homotopy, intro a, apply mul.left_inv }
end
definition Group_pmap (A : Type*) (G : Group) : Group :=
Group_of_pgroup (ppmap A (pType_of_Group G))
definition CommGroup_pmap (A : Type*) (G : CommGroup) : CommGroup :=
CommGroup.mk (A →* pType_of_Group G)
⦃ comm_group, Group.struct (Group_pmap A G),
mul_comm := by intro f g; apply pmap_eq_of_homotopy; intro a; apply mul.comm ⦄
definition Group_pmap_homomorphism [constructor] {A A' : Type*} (f : A' →* A) (G : CommGroup) :
Group_pmap A G →g Group_pmap A' G :=
begin
fapply homomorphism.mk,
{ intro g, exact g ∘* f},
{ intro g h, apply pmap_eq_of_homotopy, intro a, reflexivity }
end
end group

View file

@ -6,17 +6,17 @@ Authors: Floris van Doorn
Reduced cohomology Reduced cohomology
-/ -/
import .EM import .EM algebra.arrow_group
open spectrum int trunc pointed EM group algebra circle sphere open eq spectrum int trunc pointed EM group algebra circle sphere nat
definition cohomology [reducible] (X : Type*) (Y : spectrum) (n : ) : Set := definition cohomology (X : Type*) (Y : spectrum) (n : ) : CommGroup :=
ttrunc 0 (X →* Ω[2] (Y (n+2))) CommGroup_pmap X (πag[2] (Y (2+n)))
definition ordinary_cohomology [reducible] (X : Type*) (G : CommGroup) (n : ) : Set := definition ordinary_cohomology [reducible] (X : Type*) (G : CommGroup) (n : ) : CommGroup :=
cohomology X (EM_spectrum G) n cohomology X (EM_spectrum G) n
definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ) : Set := definition ordinary_cohomology_Z [reducible] (X : Type*) (n : ) : CommGroup :=
ordinary_cohomology X ag n ordinary_cohomology X ag n
notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n notation `H^` n `[`:0 X:0 `, ` Y:0 `]`:0 := cohomology X Y n
@ -24,3 +24,19 @@ notation `H^` n `[`:0 X:0 `]`:0 := ordinary_cohomology_Z X n
check H^3[S¹*,EM_spectrum ag] check H^3[S¹*,EM_spectrum ag]
check H^3[S¹*] check H^3[S¹*]
definition unpointed_cohomology (X : Type) (Y : spectrum) (n : ) : CommGroup :=
cohomology X₊ Y n
definition cohomology_homomorphism [constructor] {X X' : Type*} (f : X' →* X) (Y : spectrum)
(n : ) : cohomology X Y n →g cohomology X' Y n :=
Group_pmap_homomorphism f (πag[2] (Y (2+n)))
definition cohomology_homomorphism_id (X : Type*) (Y : spectrum) (n : ) (f : H^n[X, Y]) :
cohomology_homomorphism (pid X) Y n f ~* f :=
!pcompose_pid
definition cohomology_homomorphism_compose {X X' X'' : Type*} (g : X'' →* X') (f : X' →* X)
(Y : spectrum) (n : ) (h : H^n[X, Y]) : cohomology_homomorphism (f ∘* g) Y n h ~*
cohomology_homomorphism g Y n (cohomology_homomorphism f Y n h) :=
!passoc⁻¹*

View file

@ -21,6 +21,10 @@ open sigma
namespace group namespace group
open is_trunc open is_trunc
theorem inv_eq_one {A : Type} [group A] {a : A} (H : a = 1) : a⁻¹ = 1 :=
iff.mpr (inv_eq_one_iff_eq_one a) H
definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1 definition pSet_of_Group (G : Group) : Set* := ptrunctype.mk G _ 1
definition pmap_of_isomorphism [constructor] {G₁ : Group} {G₂ : Group} definition pmap_of_isomorphism [constructor] {G₁ : Group} {G₂ : Group}
@ -41,6 +45,20 @@ namespace group
(φ : G₁ →g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →g G₂ := (φ : G₁ →g G₂) (f : G₁ → G₂) (p : φ ~ f) : G₁ →g G₂ :=
homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h)) homomorphism.mk f (λg h, (p (g * h))⁻¹ ⬝ to_respect_mul φ g h ⬝ ap011 mul (p g) (p h))
definition Group_of_pgroup (G : Type*) [pgroup G] : Group :=
Group.mk G _
definition pgroup_pType_of_Group [instance] (G : Group) : pgroup (pType_of_Group G) :=
⦃ pgroup, Group.struct G,
pt_mul := one_mul,
mul_pt := mul_one,
mul_left_inv_pt := mul.left_inv ⦄
definition comm_group_pType_of_Group [instance] (G : CommGroup) : comm_group (pType_of_Group G) :=
CommGroup.struct G
abbreviation gid [constructor] := @homomorphism_id
end group open group end group open group
namespace pi -- move to types.arrow namespace pi -- move to types.arrow
@ -96,6 +114,16 @@ namespace pointed
all_goals reflexivity all_goals reflexivity
end end
definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] : is_trunc n (A →* B) :=
is_trunc_equiv_closed_rev _ !pmap.sigma_char
definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] :
is_trunc n (ppmap A B) :=
!is_trunc_pmap
definition pmap_eq_of_homotopy {A B : Type*} {f g : A →* B} [is_set B] (p : f ~ g) : f = g :=
pmap_eq p !is_set.elim
definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f := definition phomotopy.sigma_char [constructor] {A B : Type*} (f g : A →* B) : (f ~* g) ≃ Σ(p : f ~ g), p pt ⬝ resp_pt g = resp_pt f :=
begin begin
fapply equiv.MK : intros h, fapply equiv.MK : intros h,