fix free_abelian_group and direct_sum
This commit is contained in:
parent
2f16008700
commit
0c4baacfcc
3 changed files with 67 additions and 40 deletions
|
@ -17,8 +17,11 @@ namespace group
|
|||
parameters {I : Type} [is_set I] (Y : I → AbGroup)
|
||||
variables {A' : AbGroup} {Y' : I → AbGroup}
|
||||
|
||||
definition dirsum_carrier : AbGroup := free_ab_group (Σi, Y i)
|
||||
local abbreviation ι [constructor] := @free_ab_group_inclusion
|
||||
open option pointed
|
||||
|
||||
definition dirsum_carrier : AbGroup := free_ab_group (Σi, Y i)₊
|
||||
|
||||
local abbreviation ι [constructor] := (@free_ab_group_inclusion (Σi, Y i)₊ _ ∘ some)
|
||||
inductive dirsum_rel : dirsum_carrier → Type :=
|
||||
| rmk : Πi y₁ y₂, dirsum_rel (ι ⟨i, y₁⟩ * ι ⟨i, y₂⟩ * (ι ⟨i, y₁ * y₂⟩)⁻¹)
|
||||
|
||||
|
@ -38,19 +41,24 @@ namespace group
|
|||
refine @set_quotient.rec_prop _ _ _ H _,
|
||||
refine @set_quotient.rec_prop _ _ _ (λx, !H) _,
|
||||
esimp, intro l, induction l with s l ih,
|
||||
exact h₂,
|
||||
induction s with v v,
|
||||
induction v with i y,
|
||||
exact h₃ _ _ (h₁ i y) ih,
|
||||
induction v with i y,
|
||||
refine h₃ (gqg_map _ _ (class_of [inr ⟨i, y⟩])) _ _ ih,
|
||||
{ exact h₂ },
|
||||
{ induction s with z z,
|
||||
{ induction z with v,
|
||||
{ refine transport P _ ih, apply ap class_of, symmetry,
|
||||
exact eq_of_rel (tr (free_ab_group.fcg_rel.resp_append !free_ab_group.fcg_rel.cancelpt1 (free_ab_group.fcg_rel.rrefl l))) },
|
||||
{ induction v with i y, exact h₃ _ _ (h₁ i y) ih } },
|
||||
{ induction z with v,
|
||||
{ refine transport P _ ih, apply ap class_of, symmetry,
|
||||
exact eq_of_rel (tr (free_ab_group.fcg_rel.resp_append !free_ab_group.fcg_rel.cancelpt2 (free_ab_group.fcg_rel.rrefl l))) },
|
||||
{ induction v with i y,
|
||||
refine h₃ (gqg_map _ _ (class_of [inr (some ⟨i, y⟩)])) _ _ ih,
|
||||
refine transport P _ (h₁ i y⁻¹),
|
||||
refine _ ⬝ !one_mul,
|
||||
refine _ ⬝ ap (λx, mul x _) (to_respect_zero (dirsum_incl i)),
|
||||
apply gqg_eq_of_rel',
|
||||
apply tr, esimp,
|
||||
refine transport dirsum_rel _ (dirsum_rel.rmk i y⁻¹ y),
|
||||
rewrite [mul.left_inv, mul.assoc],
|
||||
rewrite [mul.left_inv, mul.assoc]} } }
|
||||
end
|
||||
|
||||
definition dirsum_homotopy {φ ψ : dirsum →g A'}
|
||||
|
@ -63,15 +71,16 @@ namespace group
|
|||
end
|
||||
|
||||
definition dirsum_elim_resp_quotient (f : Πi, Y i →g A') (g : dirsum_carrier)
|
||||
(r : ∥dirsum_rel g∥) : free_ab_group_elim (λv, f v.1 v.2) g = 1 :=
|
||||
(r : ∥dirsum_rel g∥) : free_ab_group_elim ((pmap_equiv_left (Σi, Y i) A')⁻¹ (λv, f v.1 v.2)) g = 1 :=
|
||||
begin
|
||||
induction r with r, induction r,
|
||||
rewrite [to_respect_mul, to_respect_inv, to_respect_mul, ▸*, ↑foldl, *one_mul,
|
||||
to_respect_mul], apply mul.right_inv
|
||||
rewrite [to_respect_mul, to_respect_inv, to_respect_mul, ▸*, ↑foldl, *one_mul],
|
||||
rewrite [↑pmap_equiv_left], esimp,
|
||||
rewrite [-to_respect_mul], apply mul.right_inv
|
||||
end
|
||||
|
||||
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
|
||||
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
|
||||
gqg_elim _ (free_ab_group_elim ((pmap_equiv_left (Σi, Y i) A')⁻¹ (λv, f v.1 v.2))) (dirsum_elim_resp_quotient f)
|
||||
|
||||
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) (y : Y i) :
|
||||
dirsum_elim f (dirsum_incl i y) = f i y :=
|
||||
|
@ -84,7 +93,10 @@ namespace group
|
|||
begin
|
||||
apply gqg_elim_unique,
|
||||
apply free_ab_group_elim_unique,
|
||||
intro x, induction x with i y, exact H i y
|
||||
intro x, induction x with z,
|
||||
{ esimp, refine _ ⬝ to_respect_zero k, apply ap k, apply ap class_of,
|
||||
exact eq_of_rel (tr !free_ab_group.fcg_rel.cancelpt1) },
|
||||
{ induction z with i y, exact H i y }
|
||||
end
|
||||
|
||||
end
|
||||
|
|
|
@ -9,21 +9,23 @@ Constructions with groups
|
|||
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
|
||||
|
||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv trunc_index
|
||||
group
|
||||
group pointed
|
||||
|
||||
namespace group
|
||||
|
||||
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
|
||||
|
||||
variables (X : Type) {Y : Type} [is_set X] [is_set Y] {l l' : list (X ⊎ X)}
|
||||
variables (X : Type*) {Y : Type*} [is_set X] [is_set Y] {l l' : list (X ⊎ X)}
|
||||
|
||||
/- Free Abelian Group of a set -/
|
||||
/- Free Abelian Group on a pointed set -/
|
||||
namespace free_ab_group
|
||||
|
||||
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
|
||||
| rrefl : Πl, fcg_rel l l
|
||||
| cancel1 : Πx, fcg_rel [inl x, inr x] []
|
||||
| cancel2 : Πx, fcg_rel [inr x, inl x] []
|
||||
| cancelpt1 : fcg_rel [inl pt] []
|
||||
| cancelpt2 : fcg_rel [inr pt] []
|
||||
| rflip : Πx y, fcg_rel [x, y] [y, x]
|
||||
| resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ →
|
||||
fcg_rel (l₁ ++ l₃) (l₂ ++ l₄)
|
||||
|
@ -49,6 +51,8 @@ namespace group
|
|||
{ reflexivity},
|
||||
{ repeat esimp [map], exact cancel2 x},
|
||||
{ repeat esimp [map], exact cancel1 x},
|
||||
{ exact cancelpt2 X },
|
||||
{ exact cancelpt1 X },
|
||||
{ repeat esimp [map], apply fcg_rel.rflip},
|
||||
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
|
||||
{ exact rtrans IH₁ IH₂}
|
||||
|
@ -60,6 +64,8 @@ namespace group
|
|||
{ reflexivity},
|
||||
{ repeat esimp [map], exact cancel2 x},
|
||||
{ repeat esimp [map], exact cancel1 x},
|
||||
{ exact cancelpt1 X },
|
||||
{ exact cancelpt2 X },
|
||||
{ repeat esimp [map], apply fcg_rel.rflip},
|
||||
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
|
||||
{ exact rtrans IH₁ IH₂}
|
||||
|
@ -146,22 +152,24 @@ namespace group
|
|||
|
||||
/- The universal property of the free commutative group -/
|
||||
variables {X A}
|
||||
definition free_ab_group_inclusion [constructor] (x : X) : free_ab_group X :=
|
||||
class_of [inl x]
|
||||
definition free_ab_group_inclusion [constructor] : X →* free_ab_group X :=
|
||||
ppi.mk (λ x, class_of [inl x]) (eq_of_rel (tr (fcg_rel.cancelpt1 X)))
|
||||
|
||||
theorem fgh_helper_respect_fcg_rel (f : X → A) (r : fcg_rel X l l')
|
||||
theorem fgh_helper_respect_fcg_rel (f : X →* A) (r : fcg_rel X l l')
|
||||
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
|
||||
begin
|
||||
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
|
||||
{ reflexivity},
|
||||
{ unfold [foldl], apply mul_inv_cancel_right},
|
||||
{ unfold [foldl], apply inv_mul_cancel_right},
|
||||
{ unfold [foldl], rewrite (respect_pt f), apply mul_one },
|
||||
{ unfold [foldl], rewrite [respect_pt f, one_inv], apply mul_one },
|
||||
{ unfold [foldl, fgh_helper], apply mul.right_comm},
|
||||
{ rewrite [+foldl_append, IH₁, IH₂]},
|
||||
{ exact !IH₁ ⬝ !IH₂}
|
||||
end
|
||||
|
||||
definition free_ab_group_elim [constructor] (f : X → A) : free_ab_group X →g A :=
|
||||
definition free_ab_group_elim [constructor] (f : X →* A) : free_ab_group X →g A :=
|
||||
begin
|
||||
fapply homomorphism.mk,
|
||||
{ intro g, refine set_quotient.elim _ _ g,
|
||||
|
@ -172,10 +180,15 @@ namespace group
|
|||
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
|
||||
end
|
||||
|
||||
definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X → A :=
|
||||
φ ∘ free_ab_group_inclusion
|
||||
definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X →* A :=
|
||||
ppi.mk (φ ∘ free_ab_group_inclusion)
|
||||
begin
|
||||
refine (_ ⬝ @respect_one _ _ _ _ φ (homomorphism.p φ)),
|
||||
apply ap φ, apply eq_of_rel, apply tr,
|
||||
exact (fcg_rel.cancelpt1 X)
|
||||
end
|
||||
|
||||
definition free_ab_group_elim_unique [constructor] (f : X → A) (k : free_ab_group X →g A)
|
||||
definition free_ab_group_elim_unique [constructor] (f : X →* A) (k : free_ab_group X →g A)
|
||||
(H : k ∘ free_ab_group_inclusion ~ f) : k ~ free_ab_group_elim f :=
|
||||
begin
|
||||
refine set_quotient.rec_prop _, intro l, esimp,
|
||||
|
@ -188,18 +201,20 @@ namespace group
|
|||
end
|
||||
|
||||
variables (X A)
|
||||
definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X → A) :=
|
||||
definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X →* A) :=
|
||||
begin
|
||||
fapply equiv.MK,
|
||||
{ exact fn_of_free_ab_group_elim},
|
||||
{ exact free_ab_group_elim},
|
||||
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
|
||||
{ intro f, apply eq_of_phomotopy, fapply phomotopy.mk,
|
||||
{ intro x, esimp, unfold [foldl], apply one_mul },
|
||||
{ apply is_prop.elim } },
|
||||
{ intro k, symmetry, apply homomorphism_eq, apply free_ab_group_elim_unique,
|
||||
reflexivity }
|
||||
end
|
||||
|
||||
definition free_ab_group_functor (f : X → Y) : free_ab_group X →g free_ab_group Y :=
|
||||
free_ab_group_elim (free_ab_group_inclusion ∘ f)
|
||||
definition free_ab_group_functor (f : X →* Y) : free_ab_group X →g free_ab_group Y :=
|
||||
free_ab_group_elim (free_ab_group_inclusion ∘* f)
|
||||
|
||||
-- set_option pp.all true
|
||||
-- definition free_ab_group.rec {P : free_ab_group X → Type} [H : Πg, is_prop (P g)]
|
||||
|
|
|
@ -129,8 +129,8 @@ namespace group
|
|||
|
||||
/- The universal property of the free group -/
|
||||
variables {X G}
|
||||
definition free_group_inclusion [constructor] (x : X) : free_group X :=
|
||||
class_of [inl x]
|
||||
definition free_group_inclusion [constructor] : X →* free_group X :=
|
||||
ppi.mk (λ x, class_of [inl x]) (eq_of_rel (tr (free_group_rel.cancelpt1 X)))
|
||||
|
||||
definition fgh_helper [unfold 6] (f : X → G) (g : G) (x : X ⊎ X) : G :=
|
||||
g * sum.rec (λz, f z) (λz, (f z)⁻¹) x
|
||||
|
|
Loading…
Reference in a new issue