initiating exact couples
This commit is contained in:
parent
29bf3bdd8e
commit
1b09aee650
1 changed files with 42 additions and 0 deletions
42
algebra/exact_couple.hlean
Normal file
42
algebra/exact_couple.hlean
Normal file
|
@ -0,0 +1,42 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2016 Egbert Rijke. All rights reserved.
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Egbert Rijke
|
||||||
|
|
||||||
|
Exact couple, derived couples, and so on
|
||||||
|
-/
|
||||||
|
|
||||||
|
import algebra.group_theory hit.set_quotient types.sigma types.list types.sum
|
||||||
|
|
||||||
|
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function group
|
||||||
|
equiv
|
||||||
|
|
||||||
|
definition kernel.{l1} {A B : CommGroup.{l1}} (f : A →g B) : CommGroup.{l1} :=
|
||||||
|
begin
|
||||||
|
fapply CommGroup.mk,
|
||||||
|
{ exact fiber f 1},
|
||||||
|
fapply comm_group.mk,
|
||||||
|
{ intro x, induction x with a p, intro y, induction y with b q, fapply fiber.mk, exact a*b, rewrite respect_mul, rewrite p, rewrite q, apply mul_one},
|
||||||
|
{ exact sorry },
|
||||||
|
{ intros x y z, induction x with a p, induction y with b q, induction z with c r, esimp, exact sorry }, repeat exact sorry
|
||||||
|
end
|
||||||
|
|
||||||
|
structure is_exact {A B C : CommGroup} (f : A →g B) (g : B →g C) :=
|
||||||
|
( im_in_ker : Π(a:A), g (f a) = 1)
|
||||||
|
( ker_in_im : Π(b:B), (g b = 1) → Σ(a:A), f a = b)
|
||||||
|
|
||||||
|
definition isBoundary {B : CommGroup} (d : B →g B) := Π(b:B), d b = 1
|
||||||
|
|
||||||
|
-- definition homology {B : CommGroup} (d : B →g B) (H : isBoundary d) :=
|
||||||
|
-- quotient_group (kernel d) (image d)
|
||||||
|
|
||||||
|
structure exact_couple (A B : CommGroup) : Type :=
|
||||||
|
( i : A →g A) (j : A →g B) (k : B →g A)
|
||||||
|
( exact_ij : is_exact i j)
|
||||||
|
( exact_jk : is_exact j k)
|
||||||
|
( exact_ki : is_exact k i)
|
||||||
|
|
||||||
|
definition boundary {A B : CommGroup} (CC : exact_couple A B) : B →g B := (exact_couple.j CC) ∘g (exact_couple.k CC)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue