very small additions
This commit is contained in:
parent
ed7de51d02
commit
38bff9ddb4
2 changed files with 19 additions and 1 deletions
|
@ -175,12 +175,16 @@ definition subgroup_iso_exact_at_A_triangle : ab_kernel_incl i ~ ab_image_incl k
|
||||||
|
|
||||||
definition subgroup_homom_ker_to_im : ab_kernel i →g ab_image d :=
|
definition subgroup_homom_ker_to_im : ab_kernel i →g ab_image d :=
|
||||||
(image_homomorphism k j) ∘g subgroup_iso_exact_at_A
|
(image_homomorphism k j) ∘g subgroup_iso_exact_at_A
|
||||||
|
|
||||||
open eq
|
open eq
|
||||||
|
|
||||||
definition left_square_derived_ses : j_factor ∘g (ab_kernel_incl i) ~ (SES.f (SES_of_differential d H)) ∘g subgroup_homom_ker_to_im :=
|
definition left_square_derived_ses : j_factor ∘g (ab_kernel_incl i) ~ (SES.f (SES_of_differential d H)) ∘g subgroup_homom_ker_to_im :=
|
||||||
begin
|
begin
|
||||||
intro x,
|
intro x,
|
||||||
fapply subtype_eq,
|
fapply subtype_eq,
|
||||||
refine sorry --(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _,
|
refine sorry
|
||||||
|
-- fapply ab_hom_factors_through_lift _ _ ,
|
||||||
|
--(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _,
|
||||||
end
|
end
|
||||||
|
|
||||||
/-definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=
|
/-definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=
|
||||||
|
|
|
@ -308,6 +308,13 @@ definition hom_lift [constructor] {G H : Group} (f : G →g H) (K : subgroup_rel
|
||||||
intro g h, apply subtype_eq, esimp, apply respect_mul
|
intro g h, apply subtype_eq, esimp, apply respect_mul
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition hom_factors_through_lift {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) :
|
||||||
|
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
|
||||||
|
begin
|
||||||
|
fapply homomorphism_eq,
|
||||||
|
reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g ab_subgroup K :=
|
definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g ab_subgroup K :=
|
||||||
begin
|
begin
|
||||||
fapply homomorphism.mk,
|
fapply homomorphism.mk,
|
||||||
|
@ -318,6 +325,13 @@ definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : subgrou
|
||||||
intro g h, apply subtype_eq, apply respect_mul,
|
intro g h, apply subtype_eq, apply respect_mul,
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition ab_hom_factors_through_lift {G H : AbGroup} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) :
|
||||||
|
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
|
||||||
|
begin
|
||||||
|
fapply homomorphism_eq,
|
||||||
|
reflexivity
|
||||||
|
end
|
||||||
|
|
||||||
definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g image f :=
|
definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g image f :=
|
||||||
begin
|
begin
|
||||||
fapply hom_lift f,
|
fapply hom_lift f,
|
||||||
|
|
Loading…
Reference in a new issue