very small additions

This commit is contained in:
Steve Awodey 2017-06-01 18:01:52 -04:00 committed by Floris van Doorn
parent ed7de51d02
commit 38bff9ddb4
2 changed files with 19 additions and 1 deletions

View file

@ -175,12 +175,16 @@ definition subgroup_iso_exact_at_A_triangle : ab_kernel_incl i ~ ab_image_incl k
definition subgroup_homom_ker_to_im : ab_kernel i →g ab_image d :=
(image_homomorphism k j) ∘g subgroup_iso_exact_at_A
open eq
definition left_square_derived_ses : j_factor ∘g (ab_kernel_incl i) ~ (SES.f (SES_of_differential d H)) ∘g subgroup_homom_ker_to_im :=
begin
intro x,
fapply subtype_eq,
refine sorry --(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _,
refine sorry
-- fapply ab_hom_factors_through_lift _ _ ,
--(ap (j_factor) subgroup_iso_exact_at_A_triangle) ⬝ _,
end
/-definition derived_couple_j : derived_couple_A EC →g derived_couple_B EC :=

View file

@ -308,6 +308,13 @@ definition hom_lift [constructor] {G H : Group} (f : G →g H) (K : subgroup_rel
intro g h, apply subtype_eq, esimp, apply respect_mul
end
definition hom_factors_through_lift {G H : Group} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) :
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
begin
fapply homomorphism_eq,
reflexivity
end
definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) : G →g ab_subgroup K :=
begin
fapply homomorphism.mk,
@ -318,6 +325,13 @@ definition ab_hom_lift [constructor] {G H : AbGroup} (f : G →g H) (K : subgrou
intro g h, apply subtype_eq, apply respect_mul,
end
definition ab_hom_factors_through_lift {G H : AbGroup} (f : G →g H) (K : subgroup_rel H) (Hyp : Π (g : G), K (f g)) :
f = incl_of_subgroup K ∘g hom_lift f K Hyp :=
begin
fapply homomorphism_eq,
reflexivity
end
definition image_lift [constructor] {G H : Group} (f : G →g H) : G →g image f :=
begin
fapply hom_lift f,