WIP: coinductive colimit definition

This commit is contained in:
Floris van Doorn 2017-02-10 18:03:04 -05:00
parent 3bd66e60a4
commit 3a63635fd2

141
coind_colim.hlean Normal file
View file

@ -0,0 +1,141 @@
-- author: Floris van Doorn
import .colim
open nat seq_colim seq_colim.ops eq equiv is_equiv is_trunc function
namespace seq_colim
variables {A : → Type} {f : seq_diagram A}
definition ι0 [reducible] : A 0 → seq_colim f :=
ι f
variable (f)
definition ι0' [reducible] : A 0 → seq_colim f :=
ι f
definition glue0 (a : A 0) : shift_down f (ι0 (f a)) = ι f a :=
glue f a
definition rec_coind_point {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) (proof glue f a qed) (P0 f a))
(n : ) : Π{A : → Type} {f : seq_diagram A} (a : A n), P f (ι f a) :=
begin
induction n with n IH: intro A f a,
{ exact P0 f a },
{ exact Ps f (ι _ a) (IH a) }
end
definition rec_coind_point_succ {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) _ (P0 f a))
(n : ) {A : → Type} {f : seq_diagram A} (a : A (succ n)) :
rec_coind_point P0 Ps Pe (succ n) a = Ps f (ι _ a) (rec_coind_point P0 Ps Pe n a) :=
by reflexivity
definition rec_coind {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) (proof glue f a qed) (P0 f a))
{A : → Type} {f : seq_diagram A} (x : seq_colim f) : P f x :=
begin
induction x,
{ exact rec_coind_point P0 Ps Pe n a },
{ revert A f a, induction n with n IH: intro A f a,
{ exact Pe f a },
{ rewrite [rec_coind_point_succ _ _ _ n, rec_coind_point_succ],
note p := IH _ (shift_diag f) a,
refine change_path _ (pathover_ap _ _ (apo (Ps f) p)),
exact !elim_glue
}},
end
definition rec_coind_pt2 {P : Π⦃A : → Type⦄ (f : seq_diagram A), seq_colim f → Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f (ι0 a))
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)),
P (shift_diag f) x → P f (shift_down f x))
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0),
pathover (P f) (Ps f (ι0 (f a)) !P0) _ (P0 f a))
{A : → Type} {f : seq_diagram A} (x : seq_colim (shift_diag f))
: rec_coind P0 Ps Pe (shift_down f x) = Ps f x (rec_coind P0 Ps Pe x) :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover_dep,
apply hdeg_squareover, esimp,
refine apd_compose2 (rec_coind P0 Ps Pe) _ _ ⬝ _ ⬝ (apd_compose1 (Ps f) _ _)⁻¹,
exact sorry
--refine ap (λx, pathover_of_pathover_ap _ _ (x)) _ ⬝ _ ,
}
end
definition elim_coind_point {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
(n : ) : Π{A : → Type} (f : seq_diagram A) (a : A n), P f :=
begin
induction n with n IH: intro A f a,
{ exact P0 f a },
{ exact Ps f (ι _ a) (IH _ a) }
end
definition elim_coind_point_succ {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
(n : ) {A : → Type} {f : seq_diagram A} (a : A (succ n)) :
elim_coind_point P0 Ps Pe (succ n) f a =
Ps f (ι _ a) (elim_coind_point P0 Ps Pe n (shift_diag f) a) :=
by reflexivity
definition elim_coind_path {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
(n : ) : Π{A : → Type} (f : seq_diagram A) (a : A n),
elim_coind_point P0 Ps Pe (succ n) f (f a) = elim_coind_point P0 Ps Pe n f a :=
begin
induction n with n IH: intro A f a,
{ exact Pe f a },
{ rewrite [elim_coind_point_succ _ _ _ n, elim_coind_point_succ],
note p := IH (shift_diag f) a,
refine ap011 (Ps f) !glue p }
end
definition elim_coind {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
{A : → Type} {f : seq_diagram A} (x : seq_colim f) : P f :=
begin
induction x,
{ exact elim_coind_point P0 Ps Pe n f a },
{ exact elim_coind_path P0 Ps Pe n f a },
end
definition elim_coind_pt2 {P : Π⦃A : → Type⦄ (f : seq_diagram A), Type}
(P0 : Π⦃A⦄ (f : seq_diagram A) (a : A 0), P f)
(Ps : Π⦃A⦄ (f : seq_diagram A) (x : seq_colim (shift_diag f)), P (shift_diag f) → P f)
(Pe : Π⦃A⦄ (f : seq_diagram A) (a : A 0), Ps f (ι0 (f a)) (P0 _ (f a)) = P0 f a)
{A : → Type} {f : seq_diagram A} (x : seq_colim (shift_diag f))
: elim_coind P0 Ps Pe (shift_down f x) = Ps f x (elim_coind P0 Ps Pe x) :=
begin
induction x,
{ reflexivity },
{ apply eq_pathover, apply hdeg_square,
refine ap_compose (elim_coind P0 Ps Pe) _ _ ⬝ _ ⬝ (ap_eq_ap011 (Ps f) _ _ _)⁻¹,
refine ap02 _ !elim_glue ⬝ !elim_glue ⬝ ap011 (ap011 _) !ap_id⁻¹ !elim_glue⁻¹ }
end
end seq_colim