Merge branch 'master' of github.com:fpvandoorn/Spectral
This commit is contained in:
parent
a3146d0d2a
commit
3fd6e8e852
10 changed files with 205 additions and 73 deletions
|
@ -6,9 +6,9 @@ Authors: Floris van Doorn, Egbert Rijke
|
||||||
Constructions with groups
|
Constructions with groups
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import .quotient_group .free_commutative_group
|
import .quotient_group .free_commutative_group .product_group
|
||||||
|
|
||||||
open eq algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops
|
open eq is_equiv algebra is_trunc set_quotient relation sigma prod sum list trunc function equiv sigma.ops
|
||||||
|
|
||||||
namespace group
|
namespace group
|
||||||
|
|
||||||
|
@ -73,10 +73,10 @@ namespace group
|
||||||
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
|
definition dirsum_elim [constructor] (f : Πi, Y i →g A') : dirsum →g A' :=
|
||||||
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
|
gqg_elim _ (free_ab_group_elim (λv, f v.1 v.2)) (dirsum_elim_resp_quotient f)
|
||||||
|
|
||||||
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) :
|
definition dirsum_elim_compute (f : Πi, Y i →g A') (i : I) (y : Y i) :
|
||||||
dirsum_elim f ∘g dirsum_incl i ~ f i :=
|
dirsum_elim f (dirsum_incl i y) = f i y :=
|
||||||
begin
|
begin
|
||||||
intro g, apply one_mul
|
apply one_mul
|
||||||
end
|
end
|
||||||
|
|
||||||
definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A')
|
definition dirsum_elim_unique (f : Πi, Y i →g A') (k : dirsum →g A')
|
||||||
|
@ -89,6 +89,35 @@ namespace group
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition binary_dirsum (G H : AbGroup) : dirsum (bool.rec G H) ≃g G ×ag H :=
|
||||||
|
let branch := bool.rec G H in
|
||||||
|
let to_hom := (dirsum_elim (bool.rec (product_inl G H) (product_inr G H))
|
||||||
|
: dirsum (bool.rec G H) →g G ×ag H) in
|
||||||
|
let from_hom := (Group_sum_elim (dirsum (bool.rec G H))
|
||||||
|
(dirsum_incl branch bool.ff) (dirsum_incl branch bool.tt)
|
||||||
|
: G ×g H →g dirsum branch) in
|
||||||
|
begin
|
||||||
|
fapply isomorphism.mk,
|
||||||
|
{ exact dirsum_elim (bool.rec (product_inl G H) (product_inr G H)) },
|
||||||
|
fapply adjointify,
|
||||||
|
{ exact from_hom },
|
||||||
|
{ intro gh, induction gh with g h,
|
||||||
|
exact prod_eq (mul_one (1 * g) ⬝ one_mul g) (ap (λ o, o * h) (mul_one 1) ⬝ one_mul h) },
|
||||||
|
{ refine dirsum.rec _ _ _,
|
||||||
|
{ intro b x,
|
||||||
|
refine ap from_hom (dirsum_elim_compute (bool.rec (product_inl G H) (product_inr G H)) b x) ⬝ _,
|
||||||
|
induction b,
|
||||||
|
{ exact ap (λ y, dirsum_incl branch bool.ff x * y) (to_respect_one (dirsum_incl branch bool.tt)) ⬝ mul_one _ },
|
||||||
|
{ exact ap (λ y, y * dirsum_incl branch bool.tt x) (to_respect_one (dirsum_incl branch bool.ff)) ⬝ one_mul _ }
|
||||||
|
},
|
||||||
|
{ refine ap from_hom (to_respect_one to_hom) ⬝ to_respect_one from_hom },
|
||||||
|
{ intro g h gβ hβ,
|
||||||
|
refine ap from_hom (to_respect_mul to_hom _ _) ⬝ to_respect_mul from_hom _ _ ⬝ _,
|
||||||
|
exact ap011 mul gβ hβ
|
||||||
|
}
|
||||||
|
}
|
||||||
|
end
|
||||||
|
|
||||||
variables {I J : Set} {Y Y' Y'' : I → AbGroup}
|
variables {I J : Set} {Y Y' Y'' : I → AbGroup}
|
||||||
|
|
||||||
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
|
definition dirsum_functor [constructor] (f : Πi, Y i →g Y' i) : dirsum Y →g dirsum Y' :=
|
||||||
|
|
|
@ -8,7 +8,7 @@ Constructions with groups
|
||||||
|
|
||||||
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group
|
import algebra.group_theory hit.set_quotient types.list types.sum .subgroup .quotient_group
|
||||||
|
|
||||||
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod prod.ops sum list trunc function
|
open eq algebra is_trunc set_quotient relation sigma prod prod.ops sum list trunc function
|
||||||
equiv
|
equiv
|
||||||
namespace group
|
namespace group
|
||||||
|
|
||||||
|
@ -61,6 +61,19 @@ namespace group
|
||||||
infix ` ×g `:60 := group.product
|
infix ` ×g `:60 := group.product
|
||||||
infix ` ×ag `:60 := group.ab_product
|
infix ` ×ag `:60 := group.ab_product
|
||||||
|
|
||||||
|
definition product_inl [constructor] (G H : Group) : G →g G ×g H :=
|
||||||
|
homomorphism.mk (λx, (x, one)) (λx y, prod_eq !refl !one_mul⁻¹)
|
||||||
|
|
||||||
|
definition product_inr [constructor] (G H : Group) : H →g G ×g H :=
|
||||||
|
homomorphism.mk (λx, (one, x)) (λx y, prod_eq !one_mul⁻¹ !refl)
|
||||||
|
|
||||||
|
definition Group_sum_elim [constructor] {G H : Group} (I : AbGroup) (φ : G →g I) (ψ : H →g I) : G ×g H →g I :=
|
||||||
|
homomorphism.mk (λx, φ x.1 * ψ x.2) abstract (λx y, calc
|
||||||
|
φ (x.1 * y.1) * ψ (x.2 * y.2) = (φ x.1 * φ y.1) * (ψ x.2 * ψ y.2)
|
||||||
|
: by exact ap011 mul (to_respect_mul φ x.1 y.1) (to_respect_mul ψ x.2 y.2)
|
||||||
|
... = (φ x.1 * ψ x.2) * (φ y.1 * ψ y.2)
|
||||||
|
: by exact interchange I (φ x.1) (φ y.1) (ψ x.2) (ψ y.2)) end
|
||||||
|
|
||||||
definition product_functor [constructor] {G G' H H' : Group} (φ : G →g H) (ψ : G' →g H') :
|
definition product_functor [constructor] {G G' H H' : Group} (φ : G →g H) (ψ : G' →g H') :
|
||||||
G ×g G' →g H ×g H' :=
|
G ×g G' →g H ×g H' :=
|
||||||
homomorphism.mk (λx, (φ x.1, ψ x.2)) (λx y, prod_eq !to_respect_mul !to_respect_mul)
|
homomorphism.mk (λx, (φ x.1, ψ x.2)) (λx y, prod_eq !to_respect_mul !to_respect_mul)
|
||||||
|
@ -73,4 +86,7 @@ namespace group
|
||||||
|
|
||||||
infix ` ×≃g `:60 := group.product_isomorphism
|
infix ` ×≃g `:60 := group.product_isomorphism
|
||||||
|
|
||||||
|
definition product_group_mul_eq {G H : Group} (g h : G ×g H) : g * h = product_mul g h :=
|
||||||
|
idp
|
||||||
|
|
||||||
end group
|
end group
|
||||||
|
|
|
@ -227,10 +227,10 @@ namespace group
|
||||||
unfold qg_map, esimp, exact to_respect_mul f g h }
|
unfold qg_map, esimp, exact to_respect_mul f g h }
|
||||||
end
|
end
|
||||||
|
|
||||||
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
definition quotient_group_compute (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (g : G) :
|
||||||
quotient_group_elim f H ∘g qg_map N ~ f :=
|
quotient_group_elim f H (qg_map N g) = f g :=
|
||||||
begin
|
begin
|
||||||
intro g, reflexivity
|
reflexivity
|
||||||
end
|
end
|
||||||
|
|
||||||
definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
|
definition gelim_unique (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) (k : quotient_group N →g G')
|
||||||
|
@ -247,7 +247,7 @@ namespace group
|
||||||
end
|
end
|
||||||
|
|
||||||
definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
definition qg_universal_property (f : G →g G') (H : Π⦃g⦄, N g → f g = 1) :
|
||||||
is_contr (Σ(g : quotient_group N →g G'), g ∘g qg_map N ~ f) :=
|
is_contr (Σ(g : quotient_group N →g G'), g ∘ qg_map N ~ f) :=
|
||||||
begin
|
begin
|
||||||
fapply is_contr.mk,
|
fapply is_contr.mk,
|
||||||
-- give center of contraction
|
-- give center of contraction
|
||||||
|
@ -442,7 +442,7 @@ definition kernel_quotient_extension {A B : AbGroup} (f : A →g B) : quotient_a
|
||||||
end
|
end
|
||||||
|
|
||||||
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
definition kernel_quotient_extension_triangle {A B : AbGroup} (f : A →g B) :
|
||||||
kernel_quotient_extension f ∘g ab_qg_map (kernel_subgroup f) ~ f :=
|
kernel_quotient_extension f ∘ ab_qg_map (kernel_subgroup f) ~ f :=
|
||||||
begin
|
begin
|
||||||
intro a,
|
intro a,
|
||||||
apply quotient_group_compute
|
apply quotient_group_compute
|
||||||
|
|
|
@ -18,14 +18,21 @@ namespace group
|
||||||
definition seq_colim_incl [constructor] (i : ℕ) : A i →g seq_colim :=
|
definition seq_colim_incl [constructor] (i : ℕ) : A i →g seq_colim :=
|
||||||
qg_map _ ∘g dirsum_incl A i
|
qg_map _ ∘g dirsum_incl A i
|
||||||
|
|
||||||
definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (i + 1) (f i a))
|
definition seq_colim_quotient (h : Πi, A i →g A') (k : Πi a, h i a = h (succ i) (f i a))
|
||||||
(v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 :=
|
(v : seq_colim_carrier) (r : ∥seq_colim_rel v∥) : dirsum_elim h v = 1 :=
|
||||||
begin
|
begin
|
||||||
induction r with r, induction r, exact sorry
|
induction r with r, induction r,
|
||||||
|
refine !to_respect_mul ⬝ _,
|
||||||
|
refine ap (λγ, group_fun (dirsum_elim h) (group_fun (dirsum_incl A i) a) * group_fun (dirsum_elim h) γ) (!to_respect_inv)⁻¹ ⬝ _,
|
||||||
|
refine ap (λγ, γ * group_fun (dirsum_elim h) (group_fun (dirsum_incl A (succ i)) (f i a)⁻¹)) !dirsum_elim_compute ⬝ _,
|
||||||
|
refine ap (λγ, (h i a) * γ) !dirsum_elim_compute ⬝ _,
|
||||||
|
refine ap (λγ, γ * group_fun (h (succ i)) (f i a)⁻¹) !k ⬝ _,
|
||||||
|
refine ap (λγ, group_fun (h (succ i)) (f i a) * γ) (!to_respect_inv) ⬝ _,
|
||||||
|
exact !mul.right_inv
|
||||||
end
|
end
|
||||||
|
|
||||||
definition seq_colim_elim [constructor] (h : Πi, A i →g A')
|
definition seq_colim_elim [constructor] (h : Πi, A i →g A')
|
||||||
(k : Πi a, h i a = h (i + 1) (f i a)) : seq_colim →g A' :=
|
(k : Πi a, h i a = h (succ i) (f i a)) : seq_colim →g A' :=
|
||||||
gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k)
|
gqg_elim _ (dirsum_elim h) (seq_colim_quotient h k)
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
70
colim.hlean
70
colim.hlean
|
@ -251,7 +251,7 @@ namespace seq_colim
|
||||||
|
|
||||||
definition pshift_equiv_pinclusion {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) (n : ℕ) :
|
definition pshift_equiv_pinclusion {A : ℕ → Type*} (f : Πn, A n →* A (succ n)) (n : ℕ) :
|
||||||
psquare (pinclusion f n) (pinclusion (λn, f (n+1)) n) (f n) (pshift_equiv f) :=
|
psquare (pinclusion f n) (pinclusion (λn, f (n+1)) n) (f n) (pshift_equiv f) :=
|
||||||
phomotopy.mk homotopy.rfl begin
|
phomotopy.mk homotopy.rfl begin
|
||||||
refine !idp_con ⬝ _, esimp,
|
refine !idp_con ⬝ _, esimp,
|
||||||
induction n with n IH,
|
induction n with n IH,
|
||||||
{ esimp[inclusion_pt], esimp[shift_diag], exact !idp_con⁻¹ },
|
{ esimp[inclusion_pt], esimp[shift_diag], exact !idp_con⁻¹ },
|
||||||
|
@ -259,7 +259,7 @@ namespace seq_colim
|
||||||
rewrite ap_con, rewrite ap_con,
|
rewrite ap_con, rewrite ap_con,
|
||||||
refine _ ⬝ whisker_right _ !con.assoc,
|
refine _ ⬝ whisker_right _ !con.assoc,
|
||||||
refine _ ⬝ (con.assoc (_ ⬝ _) _ _)⁻¹,
|
refine _ ⬝ (con.assoc (_ ⬝ _) _ _)⁻¹,
|
||||||
xrewrite [-IH],
|
xrewrite [-IH],
|
||||||
esimp[shift_up], rewrite [elim_glue, ap_inv, -ap_compose'], esimp,
|
esimp[shift_up], rewrite [elim_glue, ap_inv, -ap_compose'], esimp,
|
||||||
rewrite [-+con.assoc], apply whisker_right,
|
rewrite [-+con.assoc], apply whisker_right,
|
||||||
rewrite con.assoc, apply !eq_inv_con_of_con_eq,
|
rewrite con.assoc, apply !eq_inv_con_of_con_eq,
|
||||||
|
@ -285,7 +285,6 @@ namespace seq_colim
|
||||||
!elim_glue
|
!elim_glue
|
||||||
|
|
||||||
omit p
|
omit p
|
||||||
|
|
||||||
definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)]
|
definition is_equiv_seq_colim_functor [constructor] [H : Πn, is_equiv (@g n)]
|
||||||
: is_equiv (seq_colim_functor @g p) :=
|
: is_equiv (seq_colim_functor @g p) :=
|
||||||
adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a))
|
adjointify _ (seq_colim_functor (λn, (@g _)⁻¹) (λn a, inv_commute' g f f' p a))
|
||||||
|
@ -323,29 +322,60 @@ namespace seq_colim
|
||||||
: Π(x : seq_colim f), P x :=
|
: Π(x : seq_colim f), P x :=
|
||||||
by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue
|
by induction v with Pincl Pglue; exact seq_colim.rec f Pincl Pglue
|
||||||
|
|
||||||
definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Π{n}, A n →* A (n+1)}
|
definition pseq_colim_pequiv' [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)}
|
||||||
{f' : Π{n}, A' n →* A' (n+1)} (g : Π{n}, A n ≃* A' n)
|
{f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n)
|
||||||
(p : Π⦃n⦄, g ∘* f ~ f' ∘* g) : pseq_colim @f ≃* pseq_colim @f' :=
|
(p : Π⦃n⦄, g (n+1) ∘* f n ~ f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' :=
|
||||||
pequiv_of_equiv (seq_colim_equiv @g p) (ap (ι _) (respect_pt g))
|
pequiv_of_equiv (seq_colim_equiv g p) (ap (ι _) (respect_pt (g _)))
|
||||||
|
|
||||||
|
definition pseq_colim_pequiv [constructor] {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)}
|
||||||
|
{f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n)
|
||||||
|
(p : Πn, g (n+1) ∘* f n ~* f' n ∘* g n) : pseq_colim @f ≃* pseq_colim @f' :=
|
||||||
|
pseq_colim_pequiv' g (λn, @p n)
|
||||||
|
|
||||||
definition seq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π⦃n⦄, A n → A (n+1)}
|
definition seq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π⦃n⦄, A n → A (n+1)}
|
||||||
(p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' :=
|
(p : Π⦃n⦄ (a : A n), f a = f' a) : seq_colim f ≃ seq_colim f' :=
|
||||||
seq_colim_equiv (λn, erfl) p
|
seq_colim_equiv (λn, erfl) p
|
||||||
|
|
||||||
definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Π{n}, A n →* A (n+1)}
|
definition pseq_colim_equiv_constant' [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)}
|
||||||
(p : Π⦃n⦄, f ~ f') : pseq_colim @f ≃* pseq_colim @f' :=
|
(p : Π⦃n⦄, f n ~ f' n) : pseq_colim @f ≃* pseq_colim @f' :=
|
||||||
pseq_colim_pequiv (λn, pequiv.rfl) p
|
pseq_colim_pequiv' (λn, pequiv.rfl) p
|
||||||
|
|
||||||
definition pseq_colim_pequiv_pinclusion {A A' : ℕ → Type*} {f : Π(n), A n →* A (n+1)}
|
definition pseq_colim_equiv_constant [constructor] {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)}
|
||||||
{f' : Π(n), A' n →* A' (n+1)} (g : Π(n), A n ≃* A' n)
|
(p : Πn, f n ~* f' n) : pseq_colim @f ≃* pseq_colim @f' :=
|
||||||
(p : Π⦃n⦄, g (n+1) ∘* f n ~ f' n ∘* g n) (n : ℕ) :
|
pseq_colim_pequiv (λn, pequiv.rfl) (λn, !pid_pcompose ⬝* p n ⬝* !pcompose_pid⁻¹*)
|
||||||
|
|
||||||
|
definition pseq_colim_pequiv_pinclusion {A A' : ℕ → Type*} {f : Πn, A n →* A (n+1)}
|
||||||
|
{f' : Πn, A' n →* A' (n+1)} (g : Πn, A n ≃* A' n)
|
||||||
|
(p : Π⦃n⦄, g (n+1) ∘* f n ~* f' n ∘* g n) (n : ℕ) :
|
||||||
psquare (pinclusion f n) (pinclusion f' n) (g n) (pseq_colim_pequiv g p) :=
|
psquare (pinclusion f n) (pinclusion f' n) (g n) (pseq_colim_pequiv g p) :=
|
||||||
sorry
|
phomotopy.mk homotopy.rfl begin
|
||||||
|
esimp, refine !idp_con ⬝ _,
|
||||||
|
induction n with n IH,
|
||||||
|
{ esimp[inclusion_pt], exact !idp_con⁻¹ },
|
||||||
|
{ esimp[inclusion_pt], rewrite [+ap_con, -+ap_inv, +con.assoc, +seq_colim_functor_glue],
|
||||||
|
xrewrite[-IH],
|
||||||
|
rewrite[-+ap_compose', -+con.assoc],
|
||||||
|
apply whisker_right, esimp,
|
||||||
|
rewrite[(eq_con_inv_of_con_eq (!to_homotopy_pt))],
|
||||||
|
rewrite[ap_con], esimp,
|
||||||
|
rewrite[-+con.assoc, ap_con, -ap_compose', +ap_inv],
|
||||||
|
rewrite[-+con.assoc],
|
||||||
|
refine _ ⬝ whisker_right _ (whisker_right _ (whisker_right _ (whisker_right _ !con.left_inv⁻¹))),
|
||||||
|
rewrite[idp_con, +con.assoc], apply whisker_left,
|
||||||
|
rewrite[ap_con, -ap_compose', con_inv, +con.assoc], apply whisker_left,
|
||||||
|
refine eq_inv_con_of_con_eq _,
|
||||||
|
symmetry, exact eq_of_square !natural_square
|
||||||
|
}
|
||||||
|
end
|
||||||
|
|
||||||
definition seq_colim_equiv_constant_pinclusion {A : ℕ → Type*} {f f' : Π⦃n⦄, A n →* A (n+1)}
|
definition seq_colim_equiv_constant_pinclusion {A : ℕ → Type*} {f f' : Πn, A n →* A (n+1)}
|
||||||
(p : Π⦃n⦄ (a : A n), f a = f' a) (n : ℕ) :
|
(p : Πn, f n ~* f' n) (n : ℕ) :
|
||||||
pseq_colim_equiv_constant p ∘* pinclusion f n ~* pinclusion f' n :=
|
pseq_colim_equiv_constant p ∘* pinclusion f n ~* pinclusion f' n :=
|
||||||
sorry
|
begin
|
||||||
|
transitivity pinclusion f' n ∘* !pid,
|
||||||
|
refine phomotopy_of_psquare !pseq_colim_pequiv_pinclusion,
|
||||||
|
exact !pcompose_pid
|
||||||
|
end
|
||||||
|
|
||||||
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
|
definition is_equiv_seq_colim_rec (P : seq_colim f → Type) :
|
||||||
is_equiv (seq_colim_rec_unc :
|
is_equiv (seq_colim_rec_unc :
|
||||||
|
@ -369,7 +399,7 @@ namespace seq_colim
|
||||||
equiv.mk _ !is_equiv_seq_colim_rec
|
equiv.mk _ !is_equiv_seq_colim_rec
|
||||||
end functor
|
end functor
|
||||||
|
|
||||||
definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
|
definition pseq_colim.elim' [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
|
||||||
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B :=
|
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~ g n) : pseq_colim @f →* B :=
|
||||||
begin
|
begin
|
||||||
fapply pmap.mk,
|
fapply pmap.mk,
|
||||||
|
@ -379,6 +409,10 @@ namespace seq_colim
|
||||||
{ esimp, apply respect_pt }
|
{ esimp, apply respect_pt }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
definition pseq_colim.elim [constructor] {A : ℕ → Type*} {B : Type*} {f : Π{n}, A n →* A (n+1)}
|
||||||
|
(g : Πn, A n →* B) (p : Πn, g (n+1) ∘* f ~* g n) : pseq_colim @f →* B :=
|
||||||
|
pseq_colim.elim' g p
|
||||||
|
|
||||||
definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k :=
|
definition prep0 [constructor] {A : ℕ → Type*} (f : pseq_diagram A) (k : ℕ) : A 0 →* A k :=
|
||||||
pmap.mk (rep0 (λn x, f x) k)
|
pmap.mk (rep0 (λn x, f x) k)
|
||||||
begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end
|
begin induction k with k p, reflexivity, exact ap (@f k) p ⬝ !respect_pt end
|
||||||
|
|
|
@ -1,3 +1,11 @@
|
||||||
|
/-
|
||||||
|
Copyright (c) 2017 Yuri Sulyma, Favonia
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
Authors: Yuri Sulyma, Favonia
|
||||||
|
|
||||||
|
Reduced homology theories
|
||||||
|
-/
|
||||||
|
|
||||||
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib
|
import ..homotopy.spectrum ..homotopy.EM ..algebra.arrow_group ..algebra.direct_sum ..homotopy.fwedge ..choice ..homotopy.pushout ..move_to_lib
|
||||||
|
|
||||||
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
|
open eq spectrum int pointed group algebra sphere nat equiv susp is_trunc
|
||||||
|
@ -10,36 +18,39 @@ namespace homology
|
||||||
structure homology_theory.{u} : Type.{u+1} :=
|
structure homology_theory.{u} : Type.{u+1} :=
|
||||||
(HH : ℤ → pType.{u} → AbGroup.{u})
|
(HH : ℤ → pType.{u} → AbGroup.{u})
|
||||||
(Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y)
|
(Hh : Π(n : ℤ) {X Y : Type*} (f : X →* Y), HH n X →g HH n Y)
|
||||||
(Hid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
|
(Hpid : Π(n : ℤ) {X : Type*} (x : HH n X), Hh n (pid X) x = x)
|
||||||
(Hcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y),
|
(Hpcompose : Π(n : ℤ) {X Y Z : Type*} (f : Y →* Z) (g : X →* Y),
|
||||||
Hh n (f ∘* g) ~ Hh n f ∘ Hh n g)
|
Hh n (f ∘* g) ~ Hh n f ∘ Hh n g)
|
||||||
(Hsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
|
(Hpsusp : Π(n : ℤ) (X : Type*), HH (succ n) (psusp X) ≃g HH n X)
|
||||||
(Hsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y),
|
(Hpsusp_natural : Π(n : ℤ) {X Y : Type*} (f : X →* Y),
|
||||||
Hsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hsusp n X)
|
Hpsusp n Y ∘ Hh (succ n) (psusp_functor f) ~ Hh n f ∘ Hpsusp n X)
|
||||||
(Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f)))
|
(Hexact : Π(n : ℤ) {X Y : Type*} (f : X →* Y), is_exact_g (Hh n f) (Hh n (pcod f)))
|
||||||
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv
|
(Hadditive : Π(n : ℤ) {I : Set.{u}} (X : I → Type*), is_equiv
|
||||||
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X)))
|
(dirsum_elim (λi, Hh n (pinl i)) : dirsum (λi, HH n (X i)) → HH n (⋁ X)))
|
||||||
|
|
||||||
|
structure ordinary_homology_theory.{u} extends homology_theory.{u} : Type.{u+1} :=
|
||||||
|
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift (psphere 0))))
|
||||||
|
|
||||||
section
|
section
|
||||||
parameter (theory : homology_theory)
|
parameter (theory : homology_theory)
|
||||||
open homology_theory
|
open homology_theory
|
||||||
|
|
||||||
theorem HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
theorem HH_base_indep (n : ℤ) {A : Type} (a b : A)
|
||||||
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
|
: HH theory n (pType.mk A a) ≃g HH theory n (pType.mk A b) :=
|
||||||
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hsusp theory n (pType.mk A a)) ⁻¹ᵍ
|
calc HH theory n (pType.mk A a) ≃g HH theory (int.succ n) (psusp A) : by exact (Hpsusp theory n (pType.mk A a)) ⁻¹ᵍ
|
||||||
... ≃g HH theory n (pType.mk A b) : by exact Hsusp theory n (pType.mk A b)
|
... ≃g HH theory n (pType.mk A b) : by exact Hpsusp theory n (pType.mk A b)
|
||||||
|
|
||||||
theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt)
|
theorem Hh_homotopy' (n : ℤ) {A B : Type*} (f : A → B) (p q : f pt = pt)
|
||||||
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
|
: Hh theory n (pmap.mk f p) ~ Hh theory n (pmap.mk f q) := λ x,
|
||||||
calc Hh theory n (pmap.mk f p) x
|
calc Hh theory n (pmap.mk f p) x
|
||||||
= Hh theory n (pmap.mk f p) (Hsusp theory n A ((Hsusp theory n A)⁻¹ᵍ x))
|
= Hh theory n (pmap.mk f p) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ᵍ x))
|
||||||
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)⁻¹
|
: by exact ap (Hh theory n (pmap.mk f p)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)⁻¹
|
||||||
... = Hsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hsusp theory n A)⁻¹ x))
|
... = Hpsusp theory n B (Hh theory (succ n) (pmap.mk (susp.functor f) !refl) ((Hpsusp theory n A)⁻¹ x))
|
||||||
: by exact (Hsusp_natural theory n (pmap.mk f p) ((Hsusp theory n A)⁻¹ᵍ x))⁻¹
|
: by exact (Hpsusp_natural theory n (pmap.mk f p) ((Hpsusp theory n A)⁻¹ᵍ x))⁻¹
|
||||||
... = Hh theory n (pmap.mk f q) (Hsusp theory n A ((Hsusp theory n A)⁻¹ x))
|
... = Hh theory n (pmap.mk f q) (Hpsusp theory n A ((Hpsusp theory n A)⁻¹ x))
|
||||||
: by exact Hsusp_natural theory n (pmap.mk f q) ((Hsusp theory n A)⁻¹ x)
|
: by exact Hpsusp_natural theory n (pmap.mk f q) ((Hpsusp theory n A)⁻¹ x)
|
||||||
... = Hh theory n (pmap.mk f q) x
|
... = Hh theory n (pmap.mk f q) x
|
||||||
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hsusp theory n A)) x)
|
: by exact ap (Hh theory n (pmap.mk f q)) (equiv.to_right_inv (equiv_of_isomorphism (Hpsusp theory n A)) x)
|
||||||
|
|
||||||
theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
|
theorem Hh_homotopy (n : ℤ) {A B : Type*} (f g : A →* B) (h : f ~ g) : Hh theory n f ~ Hh theory n g := λ x,
|
||||||
calc Hh theory n f x
|
calc Hh theory n f x
|
||||||
|
@ -56,15 +67,15 @@ namespace homology
|
||||||
{ exact Hh theory n e⁻¹ᵉ* },
|
{ exact Hh theory n e⁻¹ᵉ* },
|
||||||
{ intro x, exact calc
|
{ intro x, exact calc
|
||||||
Hh theory n e (Hh theory n e⁻¹ᵉ* x)
|
Hh theory n e (Hh theory n e⁻¹ᵉ* x)
|
||||||
= Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hcompose theory n e e⁻¹ᵉ* x)⁻¹
|
= Hh theory n (e ∘* e⁻¹ᵉ*) x : by exact (Hpcompose theory n e e⁻¹ᵉ* x)⁻¹
|
||||||
... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x
|
... = Hh theory n !pid x : by exact Hh_homotopy n (e ∘* e⁻¹ᵉ*) !pid (to_right_inv e) x
|
||||||
... = x : by exact Hid theory n x
|
... = x : by exact Hpid theory n x
|
||||||
},
|
},
|
||||||
{ intro x, exact calc
|
{ intro x, exact calc
|
||||||
Hh theory n e⁻¹ᵉ* (Hh theory n e x)
|
Hh theory n e⁻¹ᵉ* (Hh theory n e x)
|
||||||
= Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hcompose theory n e⁻¹ᵉ* e x)⁻¹
|
= Hh theory n (e⁻¹ᵉ* ∘* e) x : by exact (Hpcompose theory n e⁻¹ᵉ* e x)⁻¹
|
||||||
... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x
|
... = Hh theory n !pid x : by exact Hh_homotopy n (e⁻¹ᵉ* ∘* e) !pid (to_left_inv e) x
|
||||||
... = x : by exact Hid theory n x
|
... = x : by exact Hpid theory n x
|
||||||
}
|
}
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
|
@ -1,6 +1,10 @@
|
||||||
-- Author: Kuen-Bang Hou (Favonia)
|
/-
|
||||||
|
Copyright (c) 2017 Kuen-Bang Hou (Favonia).
|
||||||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||||||
|
|
||||||
|
Author: Kuen-Bang Hou (Favonia)
|
||||||
|
-/
|
||||||
|
|
||||||
import core
|
|
||||||
import .homology
|
import .homology
|
||||||
|
|
||||||
open eq pointed group algebra circle sphere nat equiv susp
|
open eq pointed group algebra circle sphere nat equiv susp
|
||||||
|
@ -13,7 +17,7 @@ section
|
||||||
|
|
||||||
open homology_theory
|
open homology_theory
|
||||||
|
|
||||||
theorem Hsphere : Π(n : ℤ)(m : ℕ), HH theory n (plift (psphere m)) ≃g HH theory (n - m) (plift (psphere 0)) :=
|
theorem Hpsphere : Π(n : ℤ)(m : ℕ), HH theory n (plift (psphere m)) ≃g HH theory (n - m) (plift (psphere 0)) :=
|
||||||
begin
|
begin
|
||||||
intros n m, revert n, induction m with m,
|
intros n m, revert n, induction m with m,
|
||||||
{ exact λ n, isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_zero n)⁻¹ },
|
{ exact λ n, isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_zero n)⁻¹ },
|
||||||
|
@ -22,7 +26,7 @@ section
|
||||||
≃g HH theory n (psusp (plift (psphere m))) : by exact HH_isomorphism theory n (plift_psusp (psphere m))
|
≃g HH theory n (psusp (plift (psphere m))) : by exact HH_isomorphism theory n (plift_psusp (psphere m))
|
||||||
... ≃g HH theory (succ (pred n)) (psusp (plift (psphere m)))
|
... ≃g HH theory (succ (pred n)) (psusp (plift (psphere m)))
|
||||||
: by exact isomorphism_ap (λ n, HH theory n (psusp (plift (psphere m)))) (succ_pred n)⁻¹
|
: by exact isomorphism_ap (λ n, HH theory n (psusp (plift (psphere m)))) (succ_pred n)⁻¹
|
||||||
... ≃g HH theory (pred n) (plift (psphere m)) : by exact Hsusp theory (pred n) (plift (psphere m))
|
... ≃g HH theory (pred n) (plift (psphere m)) : by exact Hpsusp theory (pred n) (plift (psphere m))
|
||||||
... ≃g HH theory (pred n - m) (plift (psphere 0)) : by exact v_0 (pred n)
|
... ≃g HH theory (pred n - m) (plift (psphere 0)) : by exact v_0 (pred n)
|
||||||
... ≃g HH theory (n - succ m) (plift (psphere 0))
|
... ≃g HH theory (n - succ m) (plift (psphere 0))
|
||||||
: by exact isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_sub n 1 m ⬝ ap (λ m, n - m) (add.comm 1 m))
|
: by exact isomorphism_ap (λ n, HH theory n (plift (psphere 0))) (sub_sub n 1 m ⬝ ap (λ m, n - m) (add.comm 1 m))
|
||||||
|
|
|
@ -189,7 +189,7 @@ structure cohomology_theory.{u} : Type.{u+1} :=
|
||||||
(Hadditive : Π(n : ℤ) {I : Type.{u}} (X : I → Type*), has_choice 0 I →
|
(Hadditive : Π(n : ℤ) {I : Type.{u}} (X : I → Type*), has_choice 0 I →
|
||||||
is_equiv (Group_pi_intro (λi, Hh n (pinl i)) : HH n (⋁ X) → Πᵍ i, HH n (X i)))
|
is_equiv (Group_pi_intro (λi, Hh n (pinl i)) : HH n (⋁ X) → Πᵍ i, HH n (X i)))
|
||||||
|
|
||||||
structure ordinary_theory.{u} extends cohomology_theory.{u} : Type.{u+1} :=
|
structure ordinary_cohomology_theory.{u} extends cohomology_theory.{u} : Type.{u+1} :=
|
||||||
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift pbool)))
|
(Hdimension : Π(n : ℤ), n ≠ 0 → is_contr (HH n (plift pbool)))
|
||||||
|
|
||||||
attribute cohomology_theory.HH [coercion]
|
attribute cohomology_theory.HH [coercion]
|
||||||
|
@ -270,7 +270,7 @@ cohomology_theory.mk
|
||||||
-- print has_choice_lift
|
-- print has_choice_lift
|
||||||
-- print equiv_lift
|
-- print equiv_lift
|
||||||
-- print has_choice_equiv_closed
|
-- print has_choice_equiv_closed
|
||||||
definition ordinary_theory_EM [constructor] (G : AbGroup) : ordinary_theory :=
|
definition ordinary_cohomology_theory_EM [constructor] (G : AbGroup) : ordinary_cohomology_theory :=
|
||||||
⦃ordinary_theory, cohomology_theory_spectrum (EM_spectrum G), Hdimension := EM_dimension G ⦄
|
⦃ordinary_cohomology_theory, cohomology_theory_spectrum (EM_spectrum G), Hdimension := EM_dimension G ⦄
|
||||||
|
|
||||||
end cohomology
|
end cohomology
|
||||||
|
|
|
@ -373,13 +373,17 @@ namespace spectrum
|
||||||
definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Type* :=
|
definition spectrify_type_term {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) : Type* :=
|
||||||
Ω[k] (X (n +' k))
|
Ω[k] (X (n +' k))
|
||||||
|
|
||||||
definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (k : ℕ) (n : N) :
|
definition spectrify_type_fun' {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||||
Ω[k] (X n) →* Ω[k+1] (X (S n)) :=
|
Ω[k] (X n) →* Ω[k+1] (X (S n)) :=
|
||||||
!loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n)
|
!loopn_succ_in⁻¹ᵉ* ∘* Ω→[k] (glue X n)
|
||||||
|
|
||||||
definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
definition spectrify_type_fun {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||||
spectrify_type_term X n k →* spectrify_type_term X n (k+1) :=
|
spectrify_type_term X n k →* spectrify_type_term X n (k+1) :=
|
||||||
spectrify_type_fun' X k (n +' k)
|
spectrify_type_fun' X (n +' k) k
|
||||||
|
|
||||||
|
definition spectrify_type_fun_zero {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||||
|
spectrify_type_fun X n 0 ~* glue X n :=
|
||||||
|
!pid_pcompose
|
||||||
|
|
||||||
definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* :=
|
definition spectrify_type {N : succ_str} (X : gen_prespectrum N) (n : N) : Type* :=
|
||||||
pseq_colim (spectrify_type_fun X n)
|
pseq_colim (spectrify_type_fun X n)
|
||||||
|
@ -393,20 +397,28 @@ namespace spectrum
|
||||||
... ≡ Y n
|
... ≡ Y n
|
||||||
-/
|
-/
|
||||||
|
|
||||||
|
definition spectrify_type_fun'_succ {N : succ_str} (X : gen_prespectrum N) (n : N) (k : ℕ) :
|
||||||
|
spectrify_type_fun' X n (succ k) ~* Ω→ (spectrify_type_fun' X n k) :=
|
||||||
|
begin
|
||||||
|
refine _ ⬝* !ap1_pcompose⁻¹*,
|
||||||
|
apply !pwhisker_right,
|
||||||
|
refine !to_pinv_pequiv_MK2
|
||||||
|
end
|
||||||
|
|
||||||
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
definition spectrify_pequiv {N : succ_str} (X : gen_prespectrum N) (n : N) :
|
||||||
spectrify_type X n ≃* Ω (spectrify_type X (S n)) :=
|
spectrify_type X n ≃* Ω (spectrify_type X (S n)) :=
|
||||||
begin
|
begin
|
||||||
refine !pshift_equiv ⬝e* _,
|
refine !pshift_equiv ⬝e* _,
|
||||||
transitivity pseq_colim (λk, spectrify_type_fun' X (succ k) (S n +' k)),
|
transitivity pseq_colim (λk, spectrify_type_fun' X (S n +' k) (succ k)),
|
||||||
fapply pseq_colim_pequiv,
|
fapply pseq_colim_pequiv,
|
||||||
{ intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ },
|
{ intro n, apply loopn_pequiv_loopn, apply pequiv_ap X, apply succ_str.add_succ },
|
||||||
{ intro k, apply to_homotopy,
|
{ exact abstract begin intro k,
|
||||||
refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_natural (succ k) _) ⬝* _,
|
refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (loopn_succ_in_inv_natural (succ k) _) ⬝* _,
|
||||||
refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left,
|
refine !passoc ⬝* _ ⬝* !passoc⁻¹*, apply pwhisker_left,
|
||||||
refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy,
|
refine !apn_pcompose⁻¹* ⬝* _ ⬝* !apn_pcompose, apply apn_phomotopy,
|
||||||
exact !glue_ptransport⁻¹* },
|
exact !glue_ptransport⁻¹* end end },
|
||||||
refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*,
|
refine _ ⬝e* !pseq_colim_loop⁻¹ᵉ*,
|
||||||
refine pseq_colim_equiv_constant (λn, !ap1_pcompose⁻¹*),
|
exact pseq_colim_equiv_constant (λn, !spectrify_type_fun'_succ),
|
||||||
end
|
end
|
||||||
|
|
||||||
definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N :=
|
definition spectrify [constructor] {N : succ_str} (X : gen_prespectrum N) : gen_spectrum N :=
|
||||||
|
@ -419,21 +431,31 @@ namespace spectrum
|
||||||
-- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
|
-- note: the forward map is (currently) not definitionally equal to gluen. Is that a problem?
|
||||||
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ)
|
definition equiv_gluen {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ)
|
||||||
: X n ≃* Ω[k] (X (n +' k)) :=
|
: X n ≃* Ω[k] (X (n +' k)) :=
|
||||||
by induction k with k f; reflexivity; exact f ⬝e* loopn_pequiv_loopn k (equiv_glue X (n +' k))
|
by induction k with k f; reflexivity; exact f ⬝e* (loopn_pequiv_loopn k (equiv_glue X (n +' k))
|
||||||
⬝e* !loopn_succ_in⁻¹ᵉ*
|
⬝e* !loopn_succ_in⁻¹ᵉ*)
|
||||||
|
|
||||||
|
definition equiv_gluen_inv_succ {N : succ_str} (X : gen_spectrum N) (n : N) (k : ℕ) :
|
||||||
|
(equiv_gluen X n (k+1))⁻¹ᵉ* ~*
|
||||||
|
(equiv_gluen X n k)⁻¹ᵉ* ∘* Ω→[k] (equiv_glue X (n +' k))⁻¹ᵉ* ∘* !loopn_succ_in :=
|
||||||
|
begin
|
||||||
|
refine !trans_pinv ⬝* pwhisker_left _ _, refine !trans_pinv ⬝* _, refine !to_pinv_pequiv_MK2 ◾* !pinv_pinv
|
||||||
|
end
|
||||||
|
|
||||||
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
definition spectrify_map {N : succ_str} {X : gen_prespectrum N} : X →ₛ spectrify X :=
|
||||||
begin
|
begin
|
||||||
fapply smap.mk,
|
fapply smap.mk,
|
||||||
{ intro n, exact pinclusion _ 0 },
|
{ intro n, exact pinclusion _ 0 },
|
||||||
{ intro n, apply phomotopy_of_psquare, refine !pid_pcompose⁻¹* ⬝ph* _,
|
{ intro n, apply phomotopy_of_psquare,
|
||||||
refine !pid_pcompose⁻¹* ⬝ph* _,
|
refine !pid_pcompose⁻¹* ⬝ph* _,
|
||||||
--pshift_equiv_pinclusion (spectrify_type_fun X n) 0
|
refine !passoc ⬝* pwhisker_left _ (pshift_equiv_pinclusion (spectrify_type_fun X n) 0) ⬝* _,
|
||||||
refine _ ⬝v* _,
|
refine !passoc⁻¹* ⬝* _,
|
||||||
rotate 1, exact pshift_equiv_pinclusion (spectrify_type_fun X n) 0,
|
refine _ ◾* (spectrify_type_fun_zero X n ⬝* !pid_pcompose⁻¹*),
|
||||||
-- refine !passoc⁻¹* ⬝* pwhisker_left _ _ ⬝* _,
|
refine !passoc ⬝* pwhisker_left _ !pseq_colim_pequiv_pinclusion ⬝* _,
|
||||||
exact sorry
|
refine pwhisker_left _ (pwhisker_left _ (ap1_pid) ⬝* !pcompose_pid) ⬝* _,
|
||||||
}
|
refine !passoc ⬝* pwhisker_left _ !seq_colim_equiv_constant_pinclusion ⬝* _,
|
||||||
|
apply pinv_left_phomotopy_of_phomotopy,
|
||||||
|
exact !pseq_colim_loop_pinclusion⁻¹*
|
||||||
|
}
|
||||||
end
|
end
|
||||||
|
|
||||||
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
definition spectrify.elim {N : succ_str} {X : gen_prespectrum N} {Y : gen_spectrum N}
|
||||||
|
@ -442,7 +464,9 @@ namespace spectrum
|
||||||
fapply smap.mk,
|
fapply smap.mk,
|
||||||
{ intro n, fapply pseq_colim.elim,
|
{ intro n, fapply pseq_colim.elim,
|
||||||
{ intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) },
|
{ intro k, refine !equiv_gluen⁻¹ᵉ* ∘* apn k (f (n +' k)) },
|
||||||
{ intro k, apply to_homotopy, exact sorry }},
|
{ intro k, refine !passoc ⬝* pwhisker_right _ !equiv_gluen_inv_succ ⬝* _,
|
||||||
|
refine !passoc ⬝* _, apply pwhisker_left,
|
||||||
|
refine !passoc ⬝* _, exact sorry }},
|
||||||
{ intro n, exact sorry }
|
{ intro n, exact sorry }
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
|
@ -180,6 +180,13 @@ namespace group
|
||||||
definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b :=
|
definition isomorphism_ap {A : Type} (F : A → Group) {a b : A} (p : a = b) : F a ≃g F b :=
|
||||||
isomorphism_of_eq (ap F p)
|
isomorphism_of_eq (ap F p)
|
||||||
|
|
||||||
|
definition interchange (G : AbGroup) (a b c d : G) : (a * b) * (c * d) = (a * c) * (b * d) :=
|
||||||
|
calc (a * b) * (c * d) = a * (b * (c * d)) : by exact mul.assoc a b (c * d)
|
||||||
|
... = a * ((b * c) * d) : by exact ap (λ bcd, a * bcd) (mul.assoc b c d)⁻¹
|
||||||
|
... = a * ((c * b) * d) : by exact ap (λ bc, a * (bc * d)) (mul.comm b c)
|
||||||
|
... = a * (c * (b * d)) : by exact ap (λ bcd, a * bcd) (mul.assoc c b d)
|
||||||
|
... = (a * c) * (b * d) : by exact (mul.assoc a c (b * d))⁻¹
|
||||||
|
|
||||||
end group open group
|
end group open group
|
||||||
|
|
||||||
namespace function
|
namespace function
|
||||||
|
|
Loading…
Reference in a new issue